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SUMMARY

The mammalian brain is composed of diverse,
specialized cell populations. To systematically ascer-
tain and learn from these cellular specializations, we
used Drop-seq to profile RNA expression in 690,000
individual cells sampled from 9 regions of the adult
mouse brain. We identified 565 transcriptionally
distinct groups of cells using computational ap-
proaches developed to distinguish biological from
technical signals. Cross-region analysis of these 565
cell populations revealed features of brain organiza-
tion, including a gene-expression module for synthe-
sizing axonal and presynaptic components, patterns
in the co-deployment of voltage-gated ion channels,
functional distinctions among the cells of the vascula-
ture and specialization of glutamatergic neurons
across cortical regions. Systematic neuronal classifi-
cations for two complex basal ganglia nuclei and the
striatum revealeda rarepopulationof spinyprojection
neurons. This adult mouse brain cell atlas, accessible
through interactive online software (DropViz), serves
as a reference for development, disease, and
evolution.
INTRODUCTION

Cellular specialization is central to the function of themammalian

brain. At the coarsest level, cells of different classes (for

example, neurons, astrocytes, and endothelial cells) interact to

maintain homeostasis and enable electrochemical communica-

tion. At finer levels, subtle specializations—such as those that

distinguish neuron subtypes in the same region—can control

behaviors such as appetite (Andermann and Lowell, 2017; Stern-

son, 2013), sex drive (Anderson, 2012), habit formation (O’Hare

et al., 2016; Wang et al., 2011), spatial mapping (Moser et al.,

2008), and associative learning (Krabbe et al., 2018). Some cell
populations have been characterized in detail; many remain un-

characterized or have yet to be discovered.

Systematic efforts to identify cell populations, reveal the RNA

repertoires of every cell type and state, and identify molecular

markers for each population would help to understand the func-

tions and interactions of cells in the brain, including the roles of

distinct cell types in disease. High-throughput single-cell RNA

sequencing (scRNA-seq) now enables RNA profiling in thou-

sands of individual cells in complex tissue (Han et al., 2018; Klein

et al., 2015; Macosko et al., 2015; Rosenberg et al., 2018; Zheng

et al., 2017). To date, single-cell gene expression studies have

yielded cell-type classifications in the mouse cerebral cortex

(Tasic et al., 2016; Zeisel et al., 2015), retina (Shekhar et al.,

2016), hypothalamic arcuate nucleus (Campbell et al., 2017),

entopeduncular nucleus (Wallace et al., 2017), and amygdala

(Wu et al., 2017).

In this work, we sought to analyze cellular diversity across

many brain regions in order to investigate shared and region-

specific patterns in cellular composition and gene expression.

We overcame several challenges. First, dissociating adult brain

into healthy, representative cell suspensions is difficult; many

scRNA-seq studies have thus used younger mice, in which

developmental programs are comingled with the expression

differences that underlie functional specializations. Here, we

developed techniques, borrowing ideas from preparations for

electrophysiological recordings, that allowed adult brain tissue

to be dissociated into intact cell bodies while representing all

major cell classes. Second, scRNA-seq data are simultaneously

shaped by cellular categories, continuously varying gradients,

and technical artifacts; cell clusters derived from scRNA-seq

often reflect unknown combinations of these effects. We devel-

oped analytical methods to separate biological and technical

influences on single-cell data, enabling a more transparent

understanding of the relationships driving cellular classifications.

Here, we describe a draft mouse brain cell atlas that we

created by profiling (using Drop-seq) 690,000 individual cells

from 9 major regions of the adult mouse brain. By comparing

single-cell transcriptional patterns within and across neuron

types, we identified and validated a pervasive transcriptional

program supporting axon and presynaptic function and
Cell 174, 1015–1030, August 9, 2018 ª 2018 Elsevier Inc. 1015

mailto:asaunders@genetics.med.harvard.edu
mailto:emacosko@broadinstitute.org
mailto:mccarroll@genetics.med.harvard.edu
mailto:mccarroll@genetics.med.harvard.edu
https://doi.org/10.1016/j.cell.2018.07.028
http://dropviz.org/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2018.07.028&domain=pdf


discovered large-scale patterns in ion channel gene expression

that may enact neurons’ electrophysiological properties. We

found that, in the cortex, glutamatergic neurons tend to be

specialized by region, while non-neuron cell classes, such as

those that make up the vasculature, can be variably specialized

across cortical and subcortical areas. We also highlight the

neuronal diversity of individual brain regions through the

classification of neuron types using examples from the basal

ganglia. In the globus pallidus externus (GPe) and substantia

nigra reticulata (SNr), where neuron types are not well under-

stood, we propose neuron-type classifications and identify se-

lective markers for each population. In the striatum, where

neuronal diversity is well charted, we nonetheless identify a novel

group of principal neurons that had been overlooked in decades

of research.

We hope that these data will advance a wide variety of efforts

and nominate many unforeseen research questions for further

study. To facilitate the exploration and utilization of these data,

we developed an interactive analysis platform (DropViz; http://

dropviz.org/) for comparing cell types, identifying cell popula-

tions that express genes of interest, and performing many other

kinds of analyses.

RESULTS

Isolation and Molecular Analysis of Cells for an Adult
Brain Cell Atlas
To build an atlas of cell populations and cell-type-specific

gene expression patterns across the adult (P60-70) mouse

brain, we prepared single-cell suspensions (STAR Methods)

from nine brain regions (Table S1 and Data S1) and used

Drop-seq (Macosko et al., 2015) to profile the RNA expression

of 690,207 individual cells (Figure 1A). The resulting cell sus-

pensions, which recovered intact 40%–50% of cells from

most tissues (cortex: 0.46 ± 19 mean ± SEM; striatum:

0.39 ± 20; Figures S4A–S4C), had cells with morphologies

characteristic of neurons, astrocytes, and oligodendrocytes

(Figure S1A). We generated and analyzed 13 billion

sequencing reads from the resulting Drop-seq libraries, de-

tecting 1.45 billion distinct mRNA transcripts (UMIs, unique

molecular identifiers), which arose from 31,767 distinct genes.

We ascertained an average of 17,480 reads (median =

10,824), 2,218 mRNA transcripts (median = 1,450 UMIs), and

1,169 genes per cell (median = 900).

Cell-Class Composition of Nine Adult Brain Regions
We separately analyzed data for each region using a two-stage

procedure (Figure 1B and STAR Methods). The first stage of

analysis robustly grouped cells into 8–11 broad classes (Data

S2), including neurons, astrocytes, microglia/macrophages,

oligodendrocytes, polydendrocytes (oligodendrocyte progenitor

cells), and components of the vasculature—endothelial cells,

fibroblast-like cells, andmural cells (Abbott et al., 2006; Marques

et al., 2016; Vanlandewijck et al., 2018). The hippocampus, for

example, yielded cells from all 11 cell classes (Figures S1B–

S1D), including local cell classes native to the ventricle—the

choroid plexus and ependymal cells—and a class undergoing

adult neurogenesis (Habib et al., 2016; Hochgerner et al.,
1016 Cell 174, 1015–1030, August 9, 2018
2018; Ming and Song, 2011). Distinct brain regions yielded cell

classes in different proportions (Figure S1E).

Inference of Cell Types and States Using Independent
Components Analysis
The recognition of subtle variation among cells of the same class

presents a formidable analytical challenge for unsupervised

analysis (Mayer et al., 2015; Satija et al., 2015; Shekhar et al.,

2016; Tanay and Regev, 2017; Tasic et al., 2016). The size,

diversity, and replicates for each atlas region highlighted limita-

tions in current methods, exemplified by clusters specific to

experimental replicates or driven by tissue digestion artifacts

(see below). We sought a strategy that would (1) dissect biolog-

ical from technical contributions to expression data and (2)

generate intermediate outputs (upstream of clustering) that

could be critically evaluated and analyzed.

We therefore developed an analysis method based on

independent components analysis (ICA) (Figures 1B–1E). ICA re-

duces large datasets to a smaller number of dimensions in which

entities (here cells) have score distributions that are maximally

structured—asmeasured by deviation from a normal distribution

(generally due to a spiky or clustered distribution of the cells in

that dimension)—and statistically independent (Hyvärinen,

1999). Each of the inferred independent components (ICs) is a

weighted combination of many genes (the weight of each gene’s

contribution to an IC is the gene ‘‘loading’’), and each cell is given

a score for each IC (cell loading). This score reflects the degree to

which the constellation of genes encoded by the IC is more or

less expressed in that cell as compared to the average cell in

the analysis. Each cell’s gene-expression profile is a weighted

sum of ICs.

We found that individual ICs corresponded to recognizable

biological phenomena (Figures 1D and S2C–S2H) (Adamson

et al., 2016), in contrast to results from principal components

analysis (Figure S2A). For example, among glutamatergic neu-

rons from frontal cortex cluster 6, we identified ICs whose

strongly loading genes marked specific cell types, cell states,

or spatial gradients across anatomical axes (Figure 1D). Other

ICs captured technical effects such as (1) cells from different

replicate preparations, (2) RNA libraries of different sizes, (3)

experimentally identified effects of tissue preparation, or (4)

cell-cell ‘‘doublets’’ (Figures S2C–S2H). We found that the

interpretability of individual ICs allowed us to distinguish pre-

sumed endogenous signals (called ‘‘biological ICs’’) from ICs

related to the technical signals described above. Removing

technical ICs reduced spurious distinctions among cells

(Figure S2I).

We analyzed the data from each class and region (109 ana-

lyses total) using semi-supervised ICA, in which we excluded

1,157 ICs as technical and classified the remaining 601 ICs as

biological ICs (STAR Methods). We then grouped cells based

on combinations of biological IC cell loadings into 565 subclus-

ters using network-based clustering (Shekhar et al., 2016;

Waltman and van Eck, 2013) (Figures 1E, S2J, and S2K). Of

these subclusters, 323 were neuronal, derived from 368 biolog-

ical ICs (Data S3). Across subclusters, patterns of similar RNA

expression generally corresponded to cell class rather than brain

region (Figures S1F and S1G).

http://dropviz.org/
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Figure 1. Single-Cell Transcriptional Profiling of the Adult Mouse Brain using Drop-Seq and Identification of Transcriptional Programs with

Independent Component Analysis

(A) Sagittal schematic illustrating profiled brain regions and numbers of cells sampled (anatomical detail in Data S1).

(B) Workflow for semi-supervised independent components analysis (ICA)-based signal extraction and clustering (STAR Methods). In stage 1, the digital gene

expression (DGE) matrix is clustered into cell classes (Figure S1) using ICA (‘‘global clustering’’). In stage 2 (‘‘subclustering’’), the process is repeated for each

individual cluster from stage 1. In stage 2, however, the resulting ICs are curated as ‘‘technical’’ or ‘‘biological’’ with only biological ICs used as input for sub-

clustering (Figure S2).

(legend continued on next page)
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Characteristics of the Cells of the Blood-Brain Barrier
Non-neuronal cells exhibited broadly consistent expression sig-

nals across brain regions. To better appreciate diversity among

non-neuronal classes, we grouped single-cell libraries across re-

gions by cell class and performed semi-supervised ICA on each

of the seven non-neuronal datasets independently, identifying a

total of 53 biological ICs (Figure 2A and Data S4A–S4G). We

focus here on cell classes that form the blood-brain barrier—

mural, fibroblast-like, and endothelial cells—because they are

disease relevant (Sweeney et al., 2016) and remain incompletely

characterized (Figure 2B).

Mural cells are intrinsic to the endothelium and control

vascular development, stability, and homeostasis (Sweeney

et al., 2016; Trost et al., 2016). We identified seven mural sub-

clusters from seven biological ICs (n = 4,713 cells; Figure 2C

and Data S4E). Mural cells have two subtypes: pericytes, which

associate with capillaries, and smooth muscle alpha actin (SMA)

cells, which associate with larger-bore vasculature and control

blood flow (Hill et al., 2015; Hughes and Chan-Ling, 2004; Nehls

and Drenckhahn, 1991). A single IC (IC 13) appeared to encode

this distinction, with pericyte marker Vtn as the strongest loading

gene (Figure 2C) (Vanlandewijck et al., 2018). Other enriched

genes suggest specialized pericyte function. For example,

expression of a potassium channel activated by diphosphate

levels (encoded by Kcnj8 and Abcc9) and an ADP-ribosyltrans-

ferase (Art3) suggest signaling machinery that couples dinucleo-

tide metabolites to membrane potential and post-translational

modification. Among SMA cells, Acta2 expression correlates

with an arterial versus veinous distribution (Vanlandewijck

et al., 2018). IC 19 represented this difference in a graded rather

than categorical way, as Rgs5/Acta2 expression and IC cell

scores were continuously, rather than bimodally, distributed

across these cells (Figure 2C) (Vanlandewijck et al., 2018). Our

data also identify new mural cell diversity. For example, cluster

1 expressed pericyte (Rgs5) and SMA (Acta2) markers. Unique

markers (e.g., Aldh1a1) will help determine the anatomical iden-

tify of this population (Data S4E).

While endothelial cells are known as the constituent cell class

of blood vessels, fibroblast-like cells are a recently described

population with unknown function that inhabit the perivascular

space in the brain (Vanlandewijck et al., 2018). We found seven

subclusters each of endothelial (n = 16,248) and fibroblast-like

(n = 1,587) cells (Figures 2D and 2E). Among the fibroblast-like

cells, two subclusters (4 and 5) selectively expressed many

genes encoding membrane transporters (e.g., Slc38a2,

Slc4a10, Slc26a2, and Slc47a1) and pumps (e.g., Fxyd5 and

Atp1b1) (Figure 2D). To varying extents, subclusters 1, 2, and 3

expressed genes involved with extracellular matrix (ECM) secre-
(C) t-distributed stochastic neighbor embedding (t-SNE) plots for frontal cortex

terneurons (cluster 1) and glutamatergic layers 2 and 3 and a subset of layer 5 n

(D) Examples of heterogeneous biological ICs from frontal cortex cluster 6 repres

signal (bottom, IC 29). For each example, a cell-loading t-SNE plot, gene loading

gene are shown from left to right. IC 16 corresponds to the immediate early gen

suggested by Deptor expression. IC 29 represents a spatial signal, evidenced by

(E) Correspondence between heterogeneous transcriptional signals (biological IC

Cell loadings for Biological ICs from frontal cortex cluster 6 and the resulting n

Figure S2K.

See also Figures S1 and S2; Table S1; and Data S1, S2, and S3.
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tion, angiogenesis, and contraction (Data S4F), such as the

basement membrane collagen genes (Col4a1, Col4a2, and

Col15a1) (Figure 2D). Interestingly, cluster 3 expressed higher

levels of different collagen genes (Col1a1 and Col3a1) (Data

S4F). These examples suggest that fibroblast-like cells are tran-

scriptionally specialized to support membrane transport and

ECM production; ECM secretion may involve different sets of

co-regulated collagen genes.

We identified endothelial ICs (Figure 2E) with strong contribu-

tions from genes with arterial (IC 5 and 20) and veinous (IC 3 and

12) expression, suggesting heterogeneity related to vessel type

(Data S4G) (Vanlandewijck et al., 2018). These genes (e.g.,

Tm4sf1 and Slc38a5) showed continuous, reciprocal expression

(Data S4G), consistent with the smooth molecular transitions

described for endothelial cells associated with arteries or veins

(Vanlandewijck et al., 2018). Other ICs identified genes with

more bimodal expression, indicating specializations within this

artery/vein gradient. Subcluster 6 exhibited exclusive expression

ofCytl1 and enrichment for arterial marker Bmx, along with other

genes implicated in growth-factor-dependent vascular remodel-

ing (Mgp, Fbln5, Eln, Igfbp4, and Clu) (Figure 2E and Data

S4G)(Boström et al., 2004; Contois et al., 2012; Fu et al., 2013;

Guadall et al., 2011; Karnik et al., 2003; Vanlandewijck et al.,

2018). Other subpopulations could represent specializations

shared across vessel types. For example, IC 10 loads onto cells

with both artery and vein markers, and strongly contributing

genes suggest a signal related to host immunity, including genes

induced by interferons (Ifit3, Ifit1, Ifit2, Ifitm3, Iigp1, Irgm1, and

Gbp7) and other proteins involved in the anti-viral response

(Isg15 and Rsad2) (Figure 2E). These examples identify endothe-

lial processes within (e.g., arterial angiogenesis) or across (e.g.,

host defense) vessel types. Other signals might reflect cell states

specialized for iron handling, calcium signaling, and the stress

response (Data S4G).

Functional specializations within endothelial, glial, and other

non-neuronal cell classes could be ubiquitous features of the

adult mouse brain or could be enriched in particular brain re-

gions. We compared the relative abundance of cells from each

region within fibroblast-like and endothelial subclusters (Fig-

ure 2F; results for other non-neuronal classes in Data S4H).While

endothelial subpopulations had similar abundances across

regions, fibroblast-like subpopulations exhibited different

contributions from cortical and subcortical areas: the cortex

and hippocampus contributed disproportionately to the popula-

tion that more strongly expressed genes with membrane-trans-

port functions (subcluster 6), while collagen-expressing cell

populations (subclusters 2 and 3) came largely from the basal

ganglia and thalamus (Figure 2F).
global clustering (left) and two representative subclusterings, GABAergic in-

eurons (cluster 6).

enting a cell state (top, IC 16), cell type (middle, IC 22), and spatial anatomical

plot, and ISH experiment (Allen Mouse Brain Atlas, ‘‘Allen’’) for a top-loading

e signal. The IC 22 signal originates from layer 5a glutamatergic neurons, as

a medial to lateral gradient of Lypd1.

s) and subclusters identified by modularity-based clustering (STAR Methods).

= 5 subclusters are identified. Alternative subcluster solutions are shown in
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Figure 2. Comprehensive Description of Transcriptional Diversity within Non-neurons as Illustrated by Cell Classes of the Vasculature

(A) Number of biological ICs identified during curation for each non-neuronal cell class. All non-neuronal ICs are shown in Data S4.

(B) Vasculature cell classes.

(C–E) Subcluster assignments and examples of two biological ICs for each (C) mural cells, (D) fibroblast-like cells, and (E) endothelial cells. Subclusters

(color-coded), IC cell loadings, and gene expression values are displayed on t-SNE plots. (Left) Subcluster assignments. (Middle) IC cell- and gene-loadings. For

each IC, the top 10 loading genes are listed. (Right) Expression plots for individual genes. For mural cell IC 19, the bottom loading gene Acta2 is shown in purple.

(F) Dot plots illustrating fractional representation of cells from each region contributing to fibroblast-like and endothelial subclusters.

Other non-neuronal cell classes are shown Data S4H.
A Neuronal Transcriptional Program Related to Axon
Function
Cell states involve constellations of co-expressed genes that

enact cellular functions. In neurons, the most well-studied state

involves the immediate early genes (IEGs), which are transcribed

in response to the Ca2+ influx that follows action potentials (Bad-

ing, 2013; Hrvatin et al., 2017). IEG expression is largely uniform
across neuronal types (Hrvatin et al., 2017) and brain regions and

exhibits little background expression, making it straightforward

to detect in the Drop-seq data.

Neurons might share other transcriptional dynamics in com-

mon. To identify such signatures, we looked for transcriptional

patterns that, despite being ascertained in different regions or

neuronal classes, involved similar gene combinations. Analysis
Cell 174, 1015–1030, August 9, 2018 1019
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Figure 3. A Prevalent Expression Program in Neurons Related to Axon Structure and Presynaptic Function

(A) Hierarchical clustering of pairwise Pearson correlations of gene-loading scores for biological ICs from 45 neuronal subclustering analyses. (Right) Enlargement

of boxed region. Correlation blocks correspond to the immediate early gene (IEG) transcriptional state, thalamus-specific ICs (TH), or ‘‘Neurofilament’’ ICs, which

are contributed from different regions and driven by genes that encode Neurofilament subunits and other proteins involved in Ca2+ handling, vesicle exocytosis,

and membrane excitability.

(B) The Neurofilament transcriptional signal (IC 17) in frontal cortex Sst+/Pvalb+ interneurons (cluster 2). (Left) IC 17 cell loadings displayed on subcluster t-SNE

plot. (Right) Gene-loading plot with the top 20 genes shown.

(legend continued on next page)
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of pairwise correlations across neuronal IC gene loadings re-

vealed three prominent correlation blocks (Figure 3A). One

such block included 15 inter-correlated ICs representing IEG-

expression signatures from different regions and neuronal types.

A second block arose from diverse thalamic neurons, suggesting

a tissue-specific transcriptional program. We focused on the

third correlation block, which consisted of ICs from many brain

regions and neuronal types.

This transcriptional pattern involved a constellation of genes

that underlie axonal and presynaptic function. We call this signal

the ‘‘Neurofilament IC,’’ because three of the most strongly

contributing genes encode the Neurofilament subunits of the

axonal cytoskeleton (Nefl, Nefm, and Nefh) (Yuan et al., 2012).

Other co-regulated genes included Syt2, Vamp1, and Cplx1—

which have roles in vesicle exocytosis—and Pvalb and Caln1,

which bind presynaptic Ca2+ (Data S5). Genes contributing to

this transcriptional pattern appear to maintain axon function

and support or tune neurotransmitter release.

Neurofilament ICs were ascertained in all brain regions and

appeared to shape gene expression in diverse neuronal popula-

tions. The expression of genes with the strongest Neurofilament

IC contributions tended to covary both within and across

neuronal types. Among interneurons, Neurofilament IC cell

loading was most prominent in fast-firing Pvalb+ populations.

In frontal cortex interneuron cluster 2, expression levels of the

genes strongly contributing to the Neurofilament IC—including

Nefh, Kcnc3, Syt2, and Nefm—were continuously distributed

and strongly correlated among Pvalb+ interneurons but lower

and less correlated among Sst+ interneurons (Figures 3B–3D).

In the hippocampus, Pvalb+ interneurons exhibited high cell

loading for the Neurofilament IC, as did the Pvalb+

‘‘prototypical’’ neurons of the GPe (Mallet et al., 2012; Saunders

et al., 2016) (Data S5). We ascertained a similar pattern among

cortical glutamatergic (Data S5) and subcortical neuromodula-

tory (Figure 7O) populations.

Single-molecule fluorescence in situ hybridization (FISH) ex-

periments confirmed that, as predicted, expression of Pvalb,

Syt2, and Nefm were highly correlated among Pvalb+ neurons

in the frontal cortex (Figures 3E–3G). Furthermore, Neurofilament

IC cell loading was visible among Pvalb+ interneurons following

Drop-seq analysis of 28,194 single nuclei isolated from flash-

frozen frontal cortex (Figure 3H). These experiments confirm

that the Neurofilament signal is present in vivo and not an artifact

of cell isolation.

We conclude that diverse neuron types share a coordinated

transcriptional program involving genes that facilitate mainte-
(C) Color-coded subcluster identities for frontal cortex cluster 2. n = 10 subcluster

into subclusters 2-8, 2-7, and 2-9.

(D) Single-gene expression plots.

(E) Comparison of Neurofilament (Syt2, Pvalb, and Nefm) and control gene (Ga

Transcript means were compared with a one-way Anova. *p < 0.05; not significa

(F and G) Neurofilament gene and control gene in situ transcript count experim

Example single confocal planes. (Right) Quantification of transcript densities.Pvalb

mimicking subclusters 2-9, 2-7, and 2-8. Differences in transcript densities were s

Experiment 1: Pvalb, Syt2, and Nefm. (G) Experiment 2: Pvalb, Syt2, and Gabra4

(H) The Neurofilament IC is observed in flash-frozen nuclei from frontal cortex. T

interneuron subcluster. (Left) Cell loadings displayed on subcluster t-SNE plot. (R

See also Data S5.
nance, elaboration, or subcellular transport to the axon and pre-

synaptic terminal. Neuronal types characterized by extensive

axonal arbors, long-distance axonal projections, and/or faster

firing rates tended to utilize this transcriptional program more

than other neurons. At the same time, the magnitude of expres-

sion varied among neurons of the same subtype, suggesting that

this transcriptional program contributes to both intra- and inter-

type diversity.

Gene-Gene Co-expression Relationships Inferred from
Hundreds of Cell Types and States
Functional imperatives constrain patterns of gene co-expression

in unknownways. To analyze co-expression relationships across

diverse brain cell types and states, we utilized gene-expression

profiles for the 565 cell populations (averaging 565 cells and 1.9

million UMIs per population); these data are less influenced by

biological and statistical noise than single-cell-level data

(Figure S3A).

To assess whether gene-gene expression correlations

captured known functional relationships, we focused first on

subunits of nicotinic acetylcholine (ACh) receptors (nAChRs,

n = 16 genes)—ligand-gated, pentameric ion channels whose

eclectic but well-described subunit combinations are known to

vary by region and neuron type (Gotti et al., 2006).

Across cell populations, expression of nAChR genes exhibited

two prominent correlation blocks, each containing genes that

encode subunits of known heteromeric a/b channels (Zoli

et al., 2015) (Figure 4A). For example, expression of Chrna3

and Chrnb4 (known to form functional receptors) was positively

correlated across a large range (from 0.01 to 100 transcripts per

100,000) (Figure 4B). Expression of other gene pairs encoding

heteromeric receptors (Chrna6/Chrnb3 and Chrna4/Chrnb2)

was also well correlated, whereas Chrnb1 and Chrnb2 were

not, consistent with a lack of b1/b2 channels in the brain (Fig-

ure 4B). These correlations match prominent subunit combina-

tions associated at a protein level, suggesting nAChR composi-

tion is achieved in part by cell-type-specific patterns of RNA

expression.

Homomeric nAChR subunits that do not have obligate part-

ners might also lack positive pairwise correlations with other

subunit genes. Several a-subunit genes had this property,

including those known (Chrna7, Chrna9, and Chrna10) and

others not yet known (Chrna1 and Chrna2) to form homomeric

channels in brain (Gotti et al., 2006). Gene expression correla-

tions across cell types recapitulated known nAChR receptor

subunit combinations (Gotti et al., 2006) more accurately than
s were based on n = 9 biological ICs. The graded loading of IC 17 is discretized

bra4) single-cell transcript counts across Pvalb+ subclusters from Drop-seq.

nt (ns) p > 0.05; Tukey honest significance difference test.

ents within Pvalb+ frontal cortex cells using single-molecule (sm)FISH. (Left)
+ cells were split into n = 3 groups based onSyt2 levels (low,medium, and high)

tatistically tested as in (E). Longer arrows indicate higher Pvalb expression. (F)

(control).

he Neurofilament (IC 25) cell-loading signal distribution across the Sst+/Pvalb+

ight) Gene-loading plots with top 20 genes are shown.
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Figure 4. Inferring Ion Channel Gene-Gene

Co-expression Relationships across Hun-

dreds of Brain Cell Types and States

(A and B) Nicotinic acetylcholine receptor (nAChR)

subunit co-expression correlations across 565

brain cell populations. (A) Hierarchical clustering of

pairwise correlations of n = 16 nAChR subunit

genes (color coded by family). (B) Scatterplots of

subunit expression (log10 scale).

(C–E) Correlation structure among voltage-gated

(VG) Na and K channels measured from 323

neuronal populations. (C) Hierarchical clustering of

pairwise expression correlations. The VGK (n = 17)

and VGNA (n = 1) alpha subunit families are color

coded and labeled. The correlation block con-

taining channels known to control firing rate is

shown with an arrow. (D–E) Select pairwise sub-

unit expression correlations. Neuronal populations

known to exhibit fast firing rates are shown in red

(Figure S3D). Slc6a8 and Hcn2 were frequently

correlated with the alpha subunit genes that pu-

tatively encode firing rate (Figure S3D).

See also Figure S3.
correlations based on the bulk expression profiles for the nine re-

gions (Figure S3B).

Co-expression relationships for other vital gene families are

less understood. Neurons attain type-specific electrophysiolog-

ical properties by expressing combinations of voltage-gated ion

channels (Marder and Goaillard, 2006), but we know little about

what combinations of channels enact neurons’ distinct physio-

logical properties (Tripathy et al., 2017). We therefore evaluated

expression pattern correlations for 71 voltage-gated potassium

(VGK) and sodium (VGNA) channel genes across neuronal

populations, focusing on the alpha (pore-forming) subunits. We

observed strong correlation blocks involving specific subsets

of VGK and VGNA genes (Figure 4C).

To evaluate whether correlation structure relates to electro-

physiological properties, we identified neuron populations

known to be fast firing (Figure S3D). One set of co-expressed

genes encoded proteins that enable fast and persistent action

potentials, including the Kcnc1-3 (Kv3.1), Kcna1 (Kv1.1), and

Scn8a (Nav1.6) channels (Chen et al., 2008; Goldberg et al.,

2008; Rudy and McBain, 2001) (Figure 4D). Fast-firing cell types
1022 Cell 174, 1015–1030, August 9, 2018
expressed high levels of Kcnc2/Kcnc1

and Scn1a/Scn8a, variable levels of

Kcnc4, and low levels of Scn2a1, whose

expression was inversely correlated with

Kcnc1-3 and Scn1a (Figure 4D). These

relationships nominate hypotheses about

channel contributions to physiological

properties: for example, Kcnc4 could be

a Kv3 family member that tailors mem-

brane properties orthogonal to firing

frequency, and Scn2a1 might undermine

fast firing.

Finally, we asked what other genes

were co-expressed with alpha subunits

associated with fast firing (Figure S3E).
This collection contained Neurofilament genes (Figure 3), ion

channels (e.g., Hcn2), and unexpected genes, such as the tran-

scription factor Foxj1 and the creatine transporter Slc6a8.

Indeed, expression of Slc6a8 and Hcn2were strongly correlated

and high in fast-firing cell types (Figure 4E). Our data suggest that

human neurological symptoms associated with Slc6a8 muta-

tions (van de Kamp et al., 2013) may in part be due to deficits

in fast-firing neurons, consistent with cortical GABAergic

synapse loss observed in mouse models (Baroncelli et al.,

2016). Gene co-expression relationships across large numbers

of cell types yield new hypotheses about genes, brain circuitry,

and disease.

Cell-type Specialization between Cortical Poles
The cerebral cortex processes motor, sensory, and associative

information and is expanded in primates, especially humans

(Buckner and Krienen, 2013). Little is known about what molec-

ular specializations contribute to region-specific cortical

function.We first determined how accurately our cortex datasets

reflect the true balance of cellular populations in vivo and then

http://dropviz.org/?_state_id_=808251cb3173eb85
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Figure 5. Excitatory Glutamatergic Neurons

underlie Regional Specialization in Cortex

(A) Relative contributions of frontal cortex (FC)

versus posterior cortex (PC) cells to biological ICs

in six separate cell-class analyses. IC skew is 1 if

only FC cells contribute and 0 if only PC cells

contribute; equal contribution is 0.5 (dotted line).

(B–D) Subcluster analyses illustrate stronger

regionalization for excitatory neurons than other

cell classes across cortical regions. (B) Subcluster

t-SNE plots for six cell classes. Cells are color

coded by region (left) and subcluster (right). Total

numbers of subclusters are shown. (C) Repre-

sentation of FC versus PC cells within subclusters.

Dot size denotes fractional representation; aster-

isks denote significant FC versus PC difference

(>3:1 compositional skew and p < 0.05; Barnard’s

test; STAR Methods). (D) (Top left) t-SNE plot of

excitatory neurons color-coded by region. (Top

right) Expression of Sccpdh and Whrn genes

enriched in subclusters disproportionately com-

posed of FC or PC cells, respectively (Figure S5).

(Bottom) ISH (Allen). High expression, long arrow;

Medium expression, short arrow.

(E) FC-PC expression differences within cell pop-

ulations. Barplot shows the number of differen-

tially expressed genes between FC and PC cells

within each subcluster (>2-fold change; p < 0.05;

Bonferroni corrected).

See also Figures S4 and S5.
identified transcriptional specializations within each non-

neuronal cell class and across glutamatergic and GABAergic

neurons.

We tested for distortion of cell-type abundance by comparing

our frontal cortex dataset to tissue (Figures S4D–S4M and STAR

Methods). Neurons were overrepresented relative to non-neu-

rons (Drop-seq: 0.76 ± 02 mean ± SEM; tissue: 0.51 ± 03) and

exhibited a 2-fold greater GABAergic/glutamatergic ratio (ISH:

5.1:1; Drop-seq: 11:1). Both effects could be partially explained

by cell-inclusion thresholds, in which small but real transcript li-

braries had been excluded from downstream analysis (neurons:

5,039 ± 15 mean ± SEM; non-neurons: 1,696 ± 9; Glu: 5,299 ±

16; GABA: 2,626 ± 21) (Figures S4D–S4I). Among GABAergic in-

terneurons, Vip+ cells were overrepresented, and Sst+ and

Pvalb+ cells were underrepresented (ISH versus Drop-seq:

Vip+, 16% versus 35%; Pvalb+, 31% versus 25%; Sst+, 28%

versus 22%), which cannot be explained by higher transcript

counts (Pvalb+: 2,996 ± 61; Sst+: 2,758 ± 53; Vip+: 2,236 ± 32),

suggesting a preferential depletion (Figures S4K–S4M). We

conclude that our data exhibit modest skews in cellular repre-

sentation driven by transcript abundance and viability.

To identify molecular specializations across cortical regions,

we performed semi-supervised ICA on cells from frontal and

posterior cortices (grouped together), analyzing each cell class

separately. Glutamatergic neurons generated more regionally
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specialized ICs than GABAergic interneu-

rons and non-neurons (Figure 5A) and ex-

hibited subclusters with skewed regional

abundances (Figures 5B–5D). Selective
markers for these cell subclusters confirmed their asymmetric

distributions across the cortical mantle (Figures 5D and S5). Glu-

tamatergic neurons exhibited unusual regional specialization no

only in subpopulation representation (subclusters), but also in

the precise gene-expression pattern within each subpopulation

far more genes were differentially expressed when comparing

regions within glutamatergic neuron as opposed to interneuron

or non-neuronal subpopulations (Figure 5E). All these lines of ev-

idence suggest that regional specializations are driven by gluta-

matergic neurons, consistent with theory from humans and othe

primates (Krienen et al., 2016).

Resolving Neuron Types within the Basal Ganglia
We identified 323 neuronal subclusters across 9 regions (Data

S3). Here, we illustrate systematic neuron classification using

three disease-relevant nuclei of the basal ganglia (Albin et al.

1989). Neurons of the striatum have been extensively character-

ized, yet neurons of the GPe and SNr have received less atten-

tion (Figure 1 and Data S1).

To define GPe neuron types, we screened markers of globa

clusters and subclusters for expression in the GPe (GP/NB data-

set). GPe neuronswere present in cluster 2 (n = 11,103 cells), one

of three neuron clusters (Figure 6A). Cluster 1 contained cholin-

ergic neurons (n = 437 cells), and cluster 3 contained neurons o

the adjacent striatum and basolateral amygdala (n = 9,847 cells)
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Within cluster 2, 8 of 25 subclusters appeared intrinsic to theGPe

or adjacent ventral pallidum (VP), of which 4 were GPe exclusive

(Figures 6B–6E). The other 17 subclusters mapped to the

thalamic reticular nucleus, the substantia innominata, and the

lateral olfactory tract (Figures S6A–S6D).

To associate subclusters with putative neuron types, we

compared published GPemarkers to selective markers we iden-

tified (Figure 6D). Only Pvalb and Penk/Foxp2 were selectively

expressed in GPe subclusters (Kita, 1994; Voorn et al., 1999),

suggesting 2-14 represents fast-spiking prototypical neurons,

while 2-19 represents the slow-firing ‘‘arkypallidal’’ population

(Abdi et al., 2015; Mallet et al., 2012). Interestingly, 2-13 is similar

to 2-14, sharing markers like Grem1, but is distinguished by

stronger expression of Scn4b, Kcnc3, and other ‘‘Neurofilament

program’’ genes (Data S5). The fourth GPe subcluster (2-17) is

enriched for Elfn1/Grik3 and has not been characterized.

Several subclusters (2-15, 2-21, and 2-18) expressed markers

in the VP and bordering GPe (Figures 6D and 6E), suggesting

neuron types shared across regions with different behavioral

functions and connectivity (Gittis et al., 2014; Kita, 2007; Smith

et al., 2009). Border-spanning subclusters may explain a neuron

type that is synaptically incorporated into the GPe but exhibits

VP-like axonal projections (Chen et al., 2015; Saunders

et al., 2015).

SNr neurons were identified with a similar procedure (SN/VTA

dataset). Of four global neuron clusters (Figure 6F), one (cluster

3, n = 10,049 cells) contained SNr neurons (Figure 6G). Other

clusters contained hippocampal (cluster 1, n = 73 cells), thalamic

(cluster 2, n = 297), and dopaminergic (cluster 4, n = 1,841) pop-

ulations. Within cluster 3, 6 of the 19 subclusters mapped to the

SNr (Figures 6H–6J and S6E–S6H). Two subcluster pairs shared

selectivemarkers (3-18/3-19:Sema3a,Adarb2; 3-17/3-13:Pax5,

Pou6f2), suggesting relatedness, but were distinguished by ion

channels (Kcnc3,Kcna1), transmembrane proteins (Tmem132c),

and transcription factors (Pou3f1) that could imply a state or sub-

type distinction (Figure 6I). Of the remaining subclusters, 3-12

expressed Slc17a6, likely corresponding to the glutamatergic

projection to thalamus (Antal et al., 2014). Subcluster 3-2 was

Gad2+/Pvalb� and expressed the developmental marker

Zfpm2 (Lahti et al., 2016), likely representing a third GABAergic

type marked by Sox14 and Cplx3 expression (Figure 6I).
Figure 6. Transcription-Based Identification of Known and Novel Neur
(A–E) Globus pallidus externus (GPe). (A) t-SNE plot of color-coded global cluster

within cluster 2. Black subclusters correspond to those of GPe or VP. (C) Subclus

patterns of selective marker genes (Figure S6), and consistent with dissections (

lateral olfactory tract; EP, rostral entopeduncular nucleus; TRN, thalamic reticula

genes, neuron type markers from the literature, and novel markers identified her

(sagittal sections). Dotted line shows approximate boundaries.

(F–J) Substantia nigra reticulata (SNr). (F) t-SNE plot of color-coded global clus

Subcluster structure within cluster 3. Black subclusters correspond to those of S

tagmental area; RN, red nucleus; SuM, supramammillary nucleus; TH, thalamus

transmitters, current SNr markers, and novel markers identified here. (J) ISH exp

(K–P) Dopaminergic versus acetylcholinergic neuromodulatory neuron populatio

dataset. (L–M) Example cluster 3 ICs that encode spatial signals within the SNc/V

genes shown at right. (L) ISH experiments (sagittal sections) for Lpl (IC 10, top) an

the ventral VTA and SNc (Allen). (O and P) Minimal heterogeneity identified withinC

loadings. Based on IC 4, cells are assigned as subcluster 1-1 or 1-2. (P) IC 4 g

(Figure 3).

See also Figure S6.
The GPe and SNr abut populations of neuromodulatory neu-

rons that release ACh or dopamine (DA), respectively. Molecular

specializations related to anatomical location exist for DA neuron

subtypes (Lammel et al., 2008; Poulin et al., 2014), yet it is un-

clear if ACh-releasing neurons exhibit similar heterogeneity and

whether this diversity has a spatial component.

Subcluster analyses of the dopaminergic (SN/VTA, cluster 4,

n = 919 cells) and cholinergic (GP/NB, cluster 1, n = 218 cells)

clusters revealed that dopaminergic neurons were indeed

more heterogeneous than the cholinergic neurons (DA: six

biological ICs, nine subclusters; ACh: two biological ICs,

two subclusters) (Figures 6A and 6F). While aspects of DA diver-

sity related to spatial positioning—for example, delineating the

dorsal (IC 10) from ventral (IC 12) VTA (Figures 6L–6N)—cholin-

ergic neurons exhibited only a Neurofilament-like signal (IC 4),

with no spatial component (Figures 6O and 6P). Thus, DA neu-

rons are more transcriptionally regionalized than cholinergic

neurons. Sampling cholinergic neurons from other areas of the

basal forebrain (Zaborszky et al., 2013) could reveal additional

signals.

Molecular Specializations of Striatal Principal Neurons
Spiny projection neurons (SPNs) represent �95% of neurons in

rodent striatum. Two principal categories distinguish SPN

subsets. The first—based on divergent axonal projections and

dopamine signaling—assigns SPNs to similarly numerous

‘‘direct’’ (dSPN) and ‘‘indirect’’ (iSPN) pathways (Albin et al.,

1989). The second—based on processing limbic versus sen-

sory/motor information—groups SPNs into spatial compart-

ments, the so-called ‘‘patch’’ and ‘‘matrix’’ (Gerfen, 1992; Gray-

biel and Ragsdale, 1978). Both dSPNs and iSPNs are present in

the patch and matrix.

Two large clusters corresponded to dSPNs (cluster 10, n =

30,835 cells) and iSPNs (cluster 11, n = 25,305) (striatum dataset;

Figures 7A and 7B) and were distinguished by 68 differentially

expressed genes, including known and undescribed pathway

markers (Figure 7C). To identify cells from patch and matrix,

we inspected transcriptional signals from SPN subclustering

(dSPN cluster 10: n = 9 biological ICs; iSPN cluster 11: n = 10;

Data S6). Each analysis identified a single candidate patch IC

whose most strongly contributing genes included known patch
on Type Distinctions within the Basal Ganglia
s (n = 11) for GP/NB dataset. Clusters 1, 2, and 3 are neuronal. (B) Subclusters

ters color coded by candidate anatomical regions, inferred by ISH expression

Data S1). VP, ventral pallidum; SI, substantia innominata; STR, striatum; LOT,

r nucleus. (D) Dot plot illustrating the expression patterns of neurotransmitter

e. (E) ISH experiments (Allen) illustrating expression within the GPe and/or VP

ters (n = 14) for substantia nigra/VTA. Clusters 1, 3, and 4 are neuronal. (G)

Nr. (H) Candidate anatomical regions inferred by ISH (Figure S6). VTA, ventral

; DpMe, deep mesencephalic nucleus. (I) Dot plot as in (D). Genes for neuro-

eriments (Allen) illustrating expression within the SNr (sagittal sections).

ns. (K) Subclusters within Th+/Ddc+ dopaminergic cluster 3 from the SN/VTA

TA. (L) IC cell loadings displayed on t-SNE plot. (K). IC gene loadings. Top 10

d Aldh1a1 (IC 12, bottom). IC 10 identifies the dorsal VTA, while IC 12 identifies

hat+/Slc5a7+ cholinergic cluster 1 from the GP/NB dataset. (O) Plot of IC 4 cell-

ene-loading plot. Top 10 loading genes suggest a Neurofilament-type signal
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markers such as Tac1 and Pdyn. Approximately 10% of iSPNs

and dSPNs exhibited this patch signal (Figures S7A and S7B).

To appreciate how the patch/matrix distinction affects

pathway specialization, we compared gene loadings across

the patch-encoding ICs for dSPNs and iSPNs (Figure S7C). We

observed classic (Tac1) and undescribed (Tshz1) pan-patch

markers (Figure S7D), as well as genes enriched in either iSPN

(Asic4) or dSPN (Necab1) patches (Figure S7E). Our data

suggest complex SPN specializations across pathways and

compartments: the transcriptional features endowed by patch

compartments are not identical for dSPNs and iSPNs, and

some of these differences appear to eliminate pathway expres-

sion differences found in the matrix dSPNs and iSPNs

(Figure S7E).

‘‘Eccentric’’ SPNs: A Novel, Third Axis of SPN Diversity
Surprisingly, about 4% of SPNs (Ppp1r1b+) were observed in a

third, smaller cluster that also expressed Adora2a and Drd1

(cluster 13: n = 2,744 cells; 4.5% of Ppp1r1b+ neurons; Figures

7A and 7B). These SPNs differed in expression from dSPNs

and iSPNs by 110 genes (more than the 68 that distinguished

dSPNs and iSPNs from each other; Figure 7C) and expressed

many genes that had little expression in the rest of the striatum

(Figure 7D). Due to their transcriptional divergence from canon-

ical SPNs, we call this population ‘‘eccentric’’ SPNs (eSPNs).

eSPNs were intermixed with other SPNs in the striatum with no

obvious spatial organization (Figures 7E and 7F). Our data

account for all known striatal interneuron types (3.9% of total

neurons) (Tepper and Bolam, 2004), suggesting by exclusion

that eSPNs are not interneurons. We conclude that eSPNs are

striatal principal neurons.

eSPN subclusters (Figures S7F–S7H) were divided into two

major groups (Figure 7H), separated by a gene set that included

markers used to distinguish canonical iSPNs from dSPNs, such

as Drd1 and Adora2a (Figure 7I). Expression of markers associ-

ated with canonical SPNs suggests eSPNs have been molecu-

larly ‘‘camouflaged,’’ including in studies using mice that have

employed Drd1- and Adora2a- driven transgenes to label and

manipulate dSPNs or iSPNs (Heiman et al., 2008; Kozorovitskiy

et al., 2012; Kravitz et al., 2012). Despite sharing markers,
Figure 7. Eccentric Spiny Projection Neurons Represent a Third Axis o

(A) t-SNE plot of color-coded global clusters (n = 15) for striatum dataset. Cluste

(B) Expression plot of pan-SPN marker Ppp1r1b, direct pathway SPN (dSPN) m

within cluster 13 are eccentric SPNs (eSPNs).

(C) Mean expression comparisons between SPN populations (log-normal scale). (L

clusters 10 and 11 (eSPNs versus d/iSPNs). Differentially expressed genes (fold ra

shown with dark dots and totals listed above. Red arrow indicates selective exp

(D) Expression plot of n = 4 genes (Casz1,Otof,Cacng5, andPcdh8) enriched in eS

enriched in cluster 13 (red arrows).

(E and F) eSPNs are anatomically dispersed throughout the striatum. (E) Single co

(Ppp1r1b) and highly selective eSPN markers (Cacng5, Otof, and Casz1) in dorsa

Casz1. Arrowhead indicates triple-positive cells. (F) Locations of triple positive Pp

ventral; L, lateral; M, medial.

(G) Color-coded subclusters from cluster 13. Subclusters 13-1, 13-2, 13-3, 13-4, a

subclusters (17% of cells, gray labels) is described in Figure S7.

(H) Expression plot of pan-SPN (Ppp1r1b), pan-eSPN (Otof), dSPN (Drd1), iSPN

(I and J) Single confocal planes from smFISH experiments validating co-expressio

expression of Otof with Adora2a and Drd1. (J) Co-expression of subcluster 13-

rowheads. (Top) Adora2a, Th, and Otof. (Bottom) Adora2a, Th, and Npffr1.
Adora2a+ eSPNs and Drd1+ eSPNs are distinguished from their

canonical SPN counterparts by expression levels of many genes

(Adora2a+ SPNs: 35 genes; Drd1+ SPNs: 96 genes; Figure S7I).

We validated additional eSPN diversity predicted by Drop-seq,

including an ultra-rare eSPN Adora2a+/Th+/Npffr1+ subtype

(13-5) that accounts for just 0.3% of all SPNs (n = 88 cells) (Fig-

ure 7J). One clue about the anatomical identity of eSPNs comes

from this small Th+ population, as spiny Th+ principal cells with

similar spatial arrangement to eSPNs have been observed in

striatum and appear to be dynamically regulated by dopamine

(Darmopil et al., 2008). Subsets of the eSPN class share markers

previously reported to distinguish SPN subtypes (Gökce

et al., 2016).

We conclude that (1) eSPNs represent a third axis of SPN

diversity, distinct from the dSPN/iSPN and patch/matrix distinc-

tions, (2) eSPNs harbor rare, additional molecular diversity, and

(3) by using markers thought to exclusively distinguish iSPNs

from dSPNs, functional studies have lumped eSPNs in with

canonical SPNs. These results highlight the utility of unbiased,

high-throughput single-cell methods for defining neuronal

populations.
DISCUSSION

The mammalian brain is a mosaic of spatially intermixed cell

classes and types. Since Cajal and Golgi, single-cell analyses

of cell morphology, membranes, and synapses have helped

illustrate how structure relates to function in neural circuits.

High-throughput single-cell-resolution molecular techniques

such as Drop-seq allow newly systematic approaches for cata-

loging the cellular building blocks of the brain.

Here, we analyzed RNA expression in more than 690,000

individual cells sampled from 9 different regions of the adult

mouse brain, encompassing all brain cell classes. We developed

an ICA-based computational method that we used to disen-

tangle technical effects from endogenous biological signals.

We highlighted several ways in which such data identify novel

cell types, ascertain cell states, and clarify the molecular basis

of regionalization across brain circuits and cell classes.
f SPN Diversity

rs 10, 11, and 13 are presumed SPNs.

arker Drd1, and indirect pathway SPN (iSPN) marker Adora2a. Ppp1r1b+ cells

eft) Cluster 10 versus cluster 11 (iSPN versus dSPNs). (Right) Cluster 13 versus

tio >2 and p < 10�100 by binomTest (Robinson et al., 2010) (STARMethods) are

ression in eSPNs.

PNs versus d/iSPNs (red arrow in C). Across all global clusters, genes are highly

nfocal planes from smFISH experiments validating co-expression of pan-SPN

l striatum. (Top) Ppp1r1b, Cacng5, and Otof. (Bottom) Ppp1r1b, Cacng5, and

p1r1b,Cacng5, and Otof cells on a schematic of coronal striatum. D, dorsal; V,

nd 13-5 correspond to eSPNs (83% of cells, black labels). The identity of other

(Adora2a), and subcluster 13-5 (Th, Npffr1) markers.

n of markers in dorsal striatum. Arrowhead indicates triple-positive cells. (I) Co-

5 markers. Triple-positive cells in dorsal striatum are indicated with white ar-
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Transcriptional variation among individual cells has diverse

sources. Cluster groups derived from these and other data

should not be reflexively equated with cell ‘‘types.’’ We identi-

fied categorically distinct patterns of RNA expression origi-

nating from cell types but also continuously varying patterns

that appeared to correspond to spatial locations and cellular

states. Our computational approach was critical for recognizing

and understanding these diverse effects on RNA expression, all

of which can simultaneously affect a cell’s RNA expression pro-

file. This approach allowed us to identify a transcriptional pro-

gram we believe is enacted to maintain axon and presynaptic

function to different degrees both within and across neuron

types. We also resolved signals from striatal SPNs representing

differences in pathway (dSPNs versus iSPNs), spatial arrange-

ment (patch versus matrix), and a cryptic molecular SPN

distinction (eSPNs).

The size and complexity of single-cell datasets can limit their

utilization. To enable diverse uses of our atlas, we developed

interactive web-based software (DropViz; http://dropviz.org/)

that facilitates access and dynamic exploration of the data. We

hope that single-cell gene expression profiles, and the patterns

present among very many such profiles, can function as a lingua

franca for discussing—and functionally dissecting—the cellular

diversity of the adult brain.
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Vanlandewijck, M., He, L., Mäe, M.A., Andrae, J., Ando, K., Del Gaudio, F., Na-

har, K., Lebouvier, T., Laviña, B., Gouveia, L., et al. (2018). A molecular atlas of

cell types and zonation in the brain vasculature. Nature 554, 475–480.

Voorn, P., van de Witte, S., Tjon, G., and Jonker, A.J. (1999). Expression of

enkephalin in pallido-striatal neurons. Ann. N Y Acad. Sci. 877, 671–675.

Wallace, M.L., Saunders, A., Huang, K.W., Philson, A.C., Goldman, M., Ma-

cosko, E.Z., McCarroll, S.A., and Sabatini, B.L. (2017). Genetically Distinct

Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor

Output of the Basal Ganglia. Neuron 94, 138–152.

Waltman, L., and van Eck, N.J. (2013). A smart local moving algorithm for

large-scale modularity-based community detection. Eur. Phys. J. B 86.

Wang, L.P., Li, F., Wang, D., Xie, K., Wang, D., Shen, X., and Tsien, J.Z. (2011).

NMDA receptors in dopaminergic neurons are crucial for habit learning.

Neuron 72, 1055–1066.

Wu, Y.E., Pan, L., Zuo, Y., Li, X., and Hong, W. (2017). Detecting Activated Cell

Populations Using Single-Cell RNA-Seq. Neuron 96, 313–329.

Yuan, A., Rao, M.V., Veeranna, and Nixon, R.A. (2012). Neurofilaments at a

glance. J. Cell Sci. 125, 3257–3263.

Zaborszky, L., Csordas, A., Mosca, K., Kim, J., Gielow, M.R., Vadasz, C., and

Nadasdy, Z. (2013). Neurons in the basal forebrain project to the cortex in a

complex topographic organization that reflects corticocortical connectivity

patterns: an experimental study based on retrograde tracing and 3D recon-

struction. Cereb. Cortex 25, 118–137.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-NeuN Millipore Cat#: MAB377; RRID:AB_2298772

anti-Olig2 Millipore Cat#: AB9610; RRID:AB_570666

Critical Commercial Assays

Macosko et al., 2015 Drop-seq beads ChemGenes Lot #s: 111615

& 072617

Nextera XT Illumina FC-131-1096

NextSeq500 High Output Kit, 75 cycles Illumina FC-404-1005

RNAscope Probe: Mm-Nefm ACD Cat #: 315611

RNAscope Probe: Mm-Pvalb ACD Cat #: 421931-C2

RNAscope Probe: Mm-Syt2 ACD Cat #: 493691-C3

RNAscope Probe: Mm-Gabra4 ACD Cat #: 424261

RNAscope Probe: Mm-Ppp1r1b ACD Cat #: 405901

RNAscope Probe: Mm-Casz1 ACD Cat #: 502461-C2

RNAscope Probe: Mm-Cacng5 ACD Cat #: 502631-C3

RNAscope Probe: Mm-Adora2a ACD Cat #: 409431

RNAscope Probe: Mm-Otof ACD Cat #: 485671-C2

RNAscope Probe: Mm-Drd1a ACD Cat #: 406491-C3

RNAscope Probe: Mm-Th ACD Cat #: 317621-C3

RNAscope Probe: Mm-Adora2a ACD Cat #: 409431-C2

RNAscope Probe: Mm-Npffr1 ACD Cat #: 410161

RNAscope Probe: Mm-Gad1 ACD Cat #: 400951-C3

RNAscope Probe: Mm-Gad2 ACD Cat #: 439371-C3

RNAscope Probe: Mm-Slc17a6 ACD Cat #: 319171-C2

RNAscope Probe: Mm-Slc17a7 ACD Cat #: 416631-C2

RNAscope Probe: Mm-Slc17a8 ACD Cat #: 431261-C3

RNAscope Probe: Mm-Vip ACD Cat #: 415961-C3

RNAscope Probe: Mm-Sst ACD Cat #: 404631

Deposited Data

Aligned BAM files, DGEs by region and

subcluster populations

This paper GEO: GSE116470

Experimental Models: Organisms/Strains

Mouse: C57Blk6/N Charles River Labs Stock #: 027

Mouse: Tg(Aldh1l1-EGFP,-DTA)D8Rth/J Jackson Labs Stock #: 026033

Mouse: B6.129P-Cx3cr1tm1Litt/J Jackson Labs Stock #: 005582

Mouse: B6.Cg-Tg(Nes-cre)1Kln/J Jackson Labs Stock #: 003771

Mouse: Ai6(RCL-ZsGreen) Jackson Labs Stock #: 007906

Oligonucleotides

Template_Switch_Oligo: AAGCAGTGGTAT

CAACGCAGAGTGAATrGrGrG

Macosko et al., 2015 N/A

TSO_PCR: AAGCAGTGGTATCAACGCAGAGT Macosko et al., 2015 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

P5-TSO_Hybrid: AATGATACGGCGACCACCG

AGATCTACACGCCT

GTCCGCGGAAGCAGTGGTATCAACGCAGAGT*

A*C

Macosko et al., 2015 N/A

Read1CustomSeqB: GCCTGTCCGCGGAAGCA

GTGGTATCAACGCAG

AGTAC

Macosko et al., 2015 N/A

Software and Algorithms

Drop-seq_tools Macosko et al., 2015 http://mccarrolllab.com/dropseq/

IcaCluster This paper http://mccarrolllab.com/wp-content/uploads/

2018/07/DropSeqIcaCluster_2.0.tar

DropViz This paper https://github.com/broadinstitute/dropviz

Other

DGEs by region and cell class; subcluster

populations; subcluster/cluster assignment files

This paper http://dropviz.org/

Interactive analysis of single-cell data by region This paper http://dropviz.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents and resources should be directed to and will be fulfilled by the Lead Contact, Steven A.

McCarroll (mccarroll@genetics.med.harvard.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell suspensions were generated from adult male mice (60–70 days old; C57Blk6/N). Two BAC transgenic mouse lines Ald1l1-EGFP

(Jackson Labs, 026033) and Cx3cr1-GFP (Jackson Labs, 005582) used in IHC experiments were also included as single replicates in

the Frontal Cortex Drop-seq dataset. Both transgenics were on a C57BL/6N background. To estimate the fraction of cells retained in

single-cell suspensions, Nestin-Cre driver mice (Jackson Labs, 003771) were bred lox-stop-lox (lsl) ZsGreen Cre-reporter (Jackson

Labs, 007906). Mice were group housed prior to experimentation on a reverse 12-hour light-dark schedule. All experiments were

approved by and in accordance with Harvard Medical School IACUC protocol number IS00000055-3.

METHOD DETAILS

Adult mouse brain single-cell suspensions
Cell suspensions were generated by adapting protocols from single-cell patch-clamp recording (Carter and Bean, 2009) and digest

times were optimized for each region (Table S1). Mice were anesthetized by isoflurane inhalation and perfused through the heart with

ice-cold Sucrose-HEPES ‘‘Cutting Buffer’’ containing (in mM) 110 NaCl, 2.5 KCl, 10 HEPES, 7.5 MgCl2, and 25 glucose, 75 sucrose

(�350 mOsm$kg-1). The brain was removed and placed in ice-cold Cutting Buffer. Blocking cuts depended on the region of interest

and desired slice orientation (Table S1). Blocked brains were then transferred to a slicing chamber containing ice-cold Cutting Buffer.

400 mm thick brain slabs were cut with a Leica VT1000s vibratome. Slabs containing the regions of interest were gently transferred

to a dissection dish with ice-cold ‘‘Dissociation Buffer’’ containing (in mM): 82 Na2SO4, 30 K2SO4, 10 HEPES, 10 glucose and

5 MgCl2. Dissociation Buffer avoided activity-induced toxicity by 1) excluding extracellular Ca2+ and 2) utilizing ionic concentrations

that maintain voltage-gated Na channels in an inactivated state [Vm = �30.5 mV, estimated by the Goldman-Hodgkin-Katz equation

using the following parameters: Inside(mM): K+ = 140, Na+ = 4, Cl- = 24; Outside(mM): K+ = 30, Na+ = 82, Cl- = 5; P: K+ = 1, Na+ = 0.05,

Cl- = 0.45; T = 34�C]. Regions of interest were gently dissected under visual guidance of a stereoscope (Leica MZ10). Dissection also

served as a wash step between buffers. Chunks of tissue containing the regions of interest were then transferred into 5mL of ‘‘Disso-

ciation + Enzyme Buffer’’ in a 15 mL falcon tube. ‘‘Dissociation + Enzyme Buffer’’ consists of ‘‘Dissociation Buffer’’ with 3 mg/ml of

Protease XXIII (Sigma-Aldrich, P5380) and 10 units/ml of Papain, 0.5 mM L-Cysteine and 0.25 mM EDTA (Worthington, LK003153).

Digestion was performed at 34 C using durations that were optimized for each region in a separate set of experiments (Table S1; see

below). Tubes containing digested tissue were transferred onto ice and the ‘‘Dissociation Buffer + Enzyme’’ replaced with 10 mL of

‘‘Dissociation Buffer + Stop Solution’’ containing ‘‘Dissociation Buffer’’ and 1mg/ml Trypsin Inhibitor (Sigma-Aldrich, T6522), 2mg/ml

BSA (Sigma-Aldrich, A2153) and 1mg/ml Ovomucoid Protease Inhibitor (Worthington, LK003153). Tissue chunks were then carefully
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titrated with a series of n = 4 fire-polished, Pasteur pipets with successively smaller bores. Bubbles were avoided. Falcon tubes con-

taining 10 mL of titurated cells were then centrifuged at 300 g for 10 minutes. The supernatant was removed and discarded, taking

care not to disturb the cell pellet. The pellet was then resuspended in 5 mL of ‘‘Dissociation Buffer + Stop Solution’’ and centrifuged

again using the same conditions. The supernatant was again removed. The cleaned cell pellet was resuspended in ‘‘Dissociation

Buffer’’ containing 0.01% BSA (w/v; ‘‘Dissociation Buffer + BSA’’). The volume of resuspension depended on the region

(Table S1). Suspensions were then passed through a pre-wet 40 mmfilter into a new tube on ice. N = 2 10 mL samples were then drawn

from the tube and mixed 1:1 with 10 mL of 2x dye mix containing Dissociation Buffer and 20 mM EthD-1 (Thermo Fisher Scientific,

L-3224), 20 mM Calcein-AM (Thermo Fisher Scientific, L-3224) and 40 mM Hoechst 33342 (Thermo Fisher Scientific, 62249). After

5minutes incubation, 10 mL from each sample was loaded onto a haemocytometer (Propper, 090001) and imaged using a fluorescent

microscope (Zeiss, Axio Observer Z1). For each of the two samples, three random locations were imaged using DIC and three

fluorescent channels to capture the dyes. These images were used to calculate cell concentrations and metrics of cell intactness.

Drop-seq analysis was performed on 44 cell suspensions, with 3-7 replicates per region.

Characterization of single-cell suspensions
Cell recovery rates from intact tissue

To determine what fraction of total brain cells are retained in a single cell suspension, we compared estimates of total cell number

from stereological counts of tissue to cell totals in suspension. For suspension assays, we estimated cell totals from a single 400 mm

coronal slab of either Frontal Cortex or dorsal Striatum. Stereological assays were performed on a series of thinner, paraformalde-

hyde-fixed tissue from the same anterior-posterior location (40 mm; see IHC section for fixation procedure). To get total counts,

densities were multiplied by volume estimates calculated using a thickness of 400 mm and surface area calculated from slide scans

of the same tissue sections (Olympus VS110). A 10% shrinkage factor due to fixation was taken into account. We aided cell counting

by using a double transgenic mouse (male, P59-60) carrying a Nestin-Cre driver (Jackson Labs, 003771) and lox-stop-lox (lsl)

ZsGreen Cre-reporter (Jackson Labs, 007906). ZsGreen aids in the identification of single-cells as it is sequestered in the soma

and proximal processes of cells. Specifically, confocal stacks were obtained with a 40x objective using the FV1200 (Olympus).

ZsGreen+ and DAPI+ cells were randomly sampled within a grid, using bounding box of 5 mm in the Z dimension to avoid over-count-

ing (Cortex, mouse 1: n = 22 stacks, n = 181 boxes; mouse 2: n = 12 stacks, n = 108 boxes; Striatum,mouse 1: n = 15 stacks, n = 1135

boxes; mouse 2: n = 16 stacks, n = 144 boxes). In both Frontal Cortex and Striatum,�66% of DAPI+ cells were ZsGreen+ on average.

To estimate cell totals in suspensions of acute 400 mmslabs of Frontal Cortex or Striatumwere cut fromNestin-Cre;lsl-ZsGreenmice.

We controlled the volume of tissue in each tube by processing only one coronal slice / tube at the appropriate anterior-posterior

location.We resuspended the pellet in 1mL of Dissociation Buffer + BSA and then re-measured the volume to account for extra buffer

introduced by filter wetting. 20 mL samples were assayed n = 3 times on the haemocytometer. Each sample was randomly imaged at

n = 5 locations. To estimate the concentrations of all cells and ZsGreen+ cells, images containing DIC, DAPI and ZsGreen channel

were analyzed using ImageJ. Sample concentrations were converted into an average total number of cells for each experiment using

the volume of the suspension.

Cell class, type and subtype acquisition bias

To determine in what ways Drop-seq datasets are or are not representative of brain tissue, we compared cellular representations

between tissue and Drop-seq datasets focusing on cell classes, types and subtypes within Frontal Cortex.

To evaluate representations at the level of cell class, we performed two sets of stereological counting experiments using IHC and

transgenic mouse lines. In the first experiment, we used the Ald1l1-GFP (Jackson Labs, 026033) line to drive GFP expression in

astrocytes and the immuno-labeled Neurons using anti-NeuN (Millipore, MAB377) antibody and Oligodendrocyte/Polydendrocyte

using anti-Olig2 (Millipore, AB9610) antibody. We visualized NeuN using a secondary antibody in the red channel (goat-anti mouse

568; Abcam, ab175473) and Olig2 (goat-anti Rabbit 647; Abcam, ab150079) in far-red. GFP was not immune-enhanced. Sections

were mounted in media containing DAPI as counterstain (Vector Laboratories, Vectashield). Four sections containing Frontal Cortex

were counted from n = 1mouse, using n = 34 random fieldswith n = 9 boxes sampled from each. In the second set of experiments, we

replaced Ald1l1-GFP with Cx3cr1-GFP mice (Jackson Labs, 005582) to label microglia instead of astrocytes. Three sections were

counted from n = 2 mice, using n = 68 random fields in total with n = 9 boxes sampled from each.

To evaluate representations at the level of cell type and subtypes, we used smFISH labeling combined with whole-slide imaging to

quantify neuron populations in situ. We sampled the frontal cortex of n = 3 p60 male mice by performing smFISH on every 5th cry-

osection (18 sections per animal) followed by whole-slide imaging on a Zeiss Axioscan z1 at 20x magnification. For quantification,

images were down sampled (Zoom factor x 4) and converted to TIFF via the Zeiss CZItoTiffBatchConverter (CZI to Tiff Converter

Suite software by Zeiss). Regions of interest that approximated the regions microdissected as inputs for Drop-seq experiments

(i.e., frontal cortex) were defined by hand using a custom ROI pipeline in CellProfiler 2.1.1 (Carpenter et al., 2006) and subsequently

input into a custom CellProfiler cell-counting pipeline. To evaluate cell type comparisons, we assessed inhibitory/excitatory ratios,

using cocktails of smFISH probes to label GABAergic (Gad1/Gad2) and glutamatergic (Slc17a6/Slc17a7/Slc17a8) populations

(Advanced Cell Diagnostic Biosystems). We counted a total of 487,003 glutamatergic and GABAergic neurons total from n = 3

mice using a custom pipeline in CellProfiler. To evaluate representations at the level of subtypes, we focused on cortical interneurons,

using smFISH probes against Pvalb, Sst and Vip. We quantified n = 68,734 interneurons, calling cells as single, double and triple-

positive population using a second custom CellProfiler pipeline (n = 3 mice).
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Nuclei Drop-seq
Frontal cortex sections (400 mm) were flash frozen using liquid nitrogen, minced and resuspended in 4 mL, then passed through a

20 mm then a 5 mm filter before being centrifuged for 10 minutes at 500 g. The pellet was then resuspended in 1 mL of ‘‘Dissociating

Buffer’’ (see above). Isolated nuclei were Hoechst stained and counted, then analyzed in standard Drop-seq devices at a concen-

tration of 176 nuclei/mL.

Immunohistochemistry, smFISH and Stereology
smFISH

Mouse brains were extracted, flash frozen in liquid nitrogen, and embedded in OCT (Sakura Tissue-Tek ref 4583). Frozen, 14 mm,

coronal sections were cut on a cryostat (Leica CM 1950) and processed for 3-color smFISH according to the ACD RNAScope

multiplexed fluorescent protocol for fresh frozen tissue (ACD user manual document numbers 320513 & 320293). Briefly, sections

were post-fixed in 4% PFA (Electron Microscopy Sciences) in PBS for 15 minutes, followed by alcohol dehydration. Sections

were permeabilized with the proprietary protease cocktail in ‘‘pretreat IV’’ followed by target probe hybridization (Key Resources

Table). For each experiment, ACD 3-plex positive control and 3-plex negative control probes were run alongside target probes to

ensure tissue quality and control for background respectively. Probes were visualized with the ACD ‘‘Alt-B’’ color module across

all experiments. For puncta counting experiments, stacks were acquired Leica SP8 at 63x magnification (n = 4-10 Z planes, 1 mm

steps). In situ expression was quantified by smFISH puncta counting in Pvalb+ cells using maximum projections through confocal

stacks acquired in Frontal Cortex. Somaweremanually segmented based after Gaussian-filteringPvalb puncta. The resulting regions

of interest (ROIs) were used as masks for analysis of other fluorescent channels. ROIs contained DAPI nuclei and exhibited little

overlap. Manual segmentation and automated puncta detection/surface area measurements were implemented in CellProfiler

2.1.1 (Carpenter et al., 2006).

IHC

Mice were deeply anesthetized with isoflurane and transcardially perfused with 4% paraformaldehyde (PFA) in 0.1 M sodium phos-

phate buffer (1x PBS). Brains were post-fixed for 1–3 days, washed in 1x PBS and sectioned (40 mm) coronally using a Vibratome

(Leica). Slices were then immunostained for the antibodies described above. Slices were incubated in a 1x PBS blocking solution

containing 5% normal horse serum and 0.3% Triton X-100 for 1 hour at room temperature. Slices were then incubated overnight

at 4�C in the same solution containing primary antibodies at the following concentrations (1:100, NeuN; 1:500, Olig2; see above sec-

tion ‘‘Cell class, type and subtype acquisition bias in Drop-seq datasets’’ for antibody details). The next morning, sections were

washed three times for five minutes in 1x PBS for and then incubated for 1 hour at room temperature in the blocking solution con-

taining donkey anti-goat Alexa 647 or Alexa 568. After drying, slices were mounted on slides (Super Frost) and allowed to dry.

ProLong antifade mounting media containing DAPI (Molecular Probes) was applied and slides were coverslipped and sealed.

Drop-seq library preparation and sequencing
Drop-seq libraries were prepared as previously described (Macosko et al., 2015) (Drop-seq protocol v3.1), with full details available

online (http://mccarrolllab.com/dropseq/). Deviations from the original protocol are noted. Cell and bead concentrations were

matched to two different sets of PDMS devices generating droplet of different volumes such that the lambda loading parameter

for cells was 0.08-0.1 and for 0.09-0.13 for beads. Cell suspensions were diluted with using room temperature ‘‘Dissociation Buffer +

BSA.’’ For device A (droplet diameter: 125 mm; droplets/ml: 980), cells were loaded at 100 cells/ml (lcell = 100/980 = 0.1). For device B

(droplet diameter: 100 mm; droplets/ml: 2631), cells were loaded at 220 cells/ml (lcell = 220/2631 = 0.08). Bead concentrations of 125

beads/ml (A) and 250 beads/ml (B) achieved lbeads between or 0.09 (A) and 0.13 (B). Flow rates for cells/beads were 1.8 – 4 mL/hr,

adjusted to the highest value possible while ensuring homogeneous droplet sizes. Oil flow rates were between 13-15 mL/hr. Cell

suspensions were split between two Drop-seq rigs to reduce runtime. Drop-seq encapsulation was performed within 2 hours after

suspension preparation. Drop-seq conditions for nuclei paralleled those outlined for cells (lnuclei �0.08). The molecular workflow for

Reverse Transcription, cDNA Amplification, Tagmentation and Sequencing follows that of Macosko et al. Note, the number of beads

and corresponding STAMPs that were pooled for SMRT cDNA amplification varied between 2-8K beads/reaction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Distinguishing single-cell libraries
To identify Drop-seq beads that hybridized mRNA from intact cells versus mRNAs in solution, we plotted total library size (UMI

counts) versus the library fraction corresponding to mitochondrial and ribosomal RNA transcripts (rRNA). We reasoned that since

mitochondrial/ribosomal RNA transcripts are present at high-concentration in the suspension, their abundance could serve as a

signature for non-cellular (ie background/ambient) hybridization. To identify beads containing cellular libraries, we plotted the library

size versus library fraction attributed to mitochondrial/ribosomal RNA transcripts.

These two-dimensional plots revealed three regions of density:

(1) Large cell libraries with low fractions of mitochondrial and ribosomal RNA transcripts corresponding to cell-bead interaction

events
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(2) Small cell libraries with high fractions of mitochondrial and ribosomal RNA transcripts corresponding to background-bead

interactions

(3) Small libraries with low fractions of mitochondrial and ribosomal RNA transcripts that likely represent libaries that have splin-

tered from a larger, ‘‘sibling’’ library due to mutations incurred in the cell barcode during amplification.

To distinguish these groups, we used an automaton-based approach to distinguish ‘‘watershed boundaries’’ allowing us to define

borders for each region of density.

Pre-processing of Drop-seq data
Illumina sequencing data were aligned to a composite genome consisting of GRCm38.81 and transgenes as previously

described (Macosko et al., 2015). Full details are available online (http://mccarrolllab.com/wp-content/uploads/2016/03/

Drop-seqAlignmentCookbookv1.2Jan2016.pdf). Digital gene expression (DGE) matrices from each sequencing pool were compiled

before ICA-based analysis.

ICA based analysis and clustering
Analysis of Drop-seq data was performed using two iterative rounds of independent component analysis (ICA) on each of the nine

tissue regions separately (first round, ‘‘Global clustering’’; second round, ‘‘Subclustering’’). Function definitions and parameter set-

tings of all operations performed are provided. In the first stage, digital gene expression matrices were column-normalized. Cells with

fewer than 400 expressed genes were removed from analysis. To identify a set of highly variable genes, we first calculated the

average mean and variance of each gene, and selected genes that were: (1) 0.1 log10 units above the expected variance for a

perfectly Poisson-distributed gene of equivalent mean expression; and (2) above a Bonferroni-corrected 99% confidence interval

defined by a normal approximation of a Poisson distribution. These selected genes were then centered and scaled across all cells,

and ICA was performed with 60 components (except for cerebellum, where only 30 components were used), using the fastICA

package in R. Clustering of these components was performed by a very similar process to that of the R package Seurat (Gierahn

et al., 2017; Satija et al., 2015): a shared nearest neighbor (SNN) graph was generated, setting the k parameter to 25 from a distance

matrix computed in IC space. Next, clustering of this graphwas performedwith the smart local moving algorithm (SLM) (Waltman and

van Eck, 2013), a modularity-based approach to detecting communities, using a resolution setting of 0.01. This produced 11-22

Global clusters across the nine different tissues, partitioning cells into broad ‘‘classes.’’

To identify finer substructure among these classes, classes with more than 200 cells were selected for subclustering. The largest

50% of the cells from each of these clusters was subjected to a variable gene selection, scaling, and independent component anal-

ysis. The independent component space is highly dependent on the number of components K that are selected for computation. To

automatically nominate a value for K, we took advantage of the fact that the fastICA algorithm begins with a whitening step, in which a

singular value decomposition is used to select the top K eigenvectors (i.e., principal components) for maximization of non-Gaussian-

ity (Hyvärinen, 1999). We therefore calculated the number of statistically meaningful principal components using the Jackstraw

method (Chung and Storey, 2015), to obtain a suitable value for K. In almost all instances of subclustering, this value was used,

with a few exceptions where K was increased slightly. These values of K were then used to compute ICs for each subclustered class.

A total of 1,758 ICs, distributed across 11 cell classes, were then individually manually curated for inclusion in clustering. By study-

ing gene loadings and cell scores, each IC was assigned to one of four ‘‘status’’ categories:

(1) Doublet (n = 759), in which top loading genes were identified asmarkers of another cell class (e.g., microglial genes seen in the

analysis of a neuronal cell class);

(2) Outlier (n = 99), in which only a small number of cells (less than five) showed high cell scores;

(3) Artifact (n = 315), in which either: (a) cell scores showed obvious replicate-specific biases, or (b) the top loading genes largely

intersected with those observed to vary strongly with digest time (Figures 3 and S3), or contained many heat-shock proteins;

(4) Biological (n = 601), in which the IC signal is believed to be likely biologically meaningful (or cannot be confidently assigned to

categories 1, 2, or 3).

To detect and remove cells with high scores on doublet and outlier ICs, we simulated a Gaussian centered at the mode of the IC

cell loading distribution, and flagged cells that were situated at the far-right of the distribution. The mode was detected by

performing a kernel density estimation of the IC loadings using the density() function in R, and the standard deviation was

calculated across all scores for that IC. Doublets and Outliers were identified as cells whose upper-bound p value was less

than 0.01 (FDR-corrected). Only ICs annotated as Biological ICs were included in the generation of the SNN graph for clustering;

Technical ICs (Doublet, Outlier, and Artifact) were not included. We note however, additional ‘‘technical’’ influences may exist in

Biological ICs. Our goal was to subcluster the data such that, as best as possible, cells with strong cell loading for each Biological

IC defined their own particular subcluster. To do this, we clustered the cells across a range of the parameters k (number of nearest

neighbors used in SNN generation) and r (resolution parameter in SLM), inspected the resulting clusters for enrichment for specific

ICs, and selected a specific pair of parameters k and r that maximized the 1:1 correspondence between IC and subcluster (Figures

S2J and S2K).
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Cross-cortex analysis
Drop-seq profiles from six classes—excitatory neuron (n = 82,936 cells), inhibitory neuron (n = 7,783), oligodendrocyte/polydendro-

cyte (n = 3,505), microglia/macrophage (n = 1,027), astrocyte (n = 7,782), and fibroblast-like/endothelial (n = 3,578) — were individ-

ually extracted from the Frontal and Posterior Cortex DGEs, and run through a single round of the ICA analysis pipeline described

above. To calculate the regional skew of ICs (Figure 5A), cells from each region were downsampled to equal representation, and

each IC that passed curation was manually thresholded (by examining that IC’s cell score distribution) to identify cells with positive

IC scores. The skew was the fraction of supra-threshold frontal cortex cells divided by the total number of positive cells (Skew score

is 1 if only FC cells contribute and 0 if only PC cells contribute; Equal contribution is 0.5). Biological ICs were used to generate

subclusters within each cell class analysis. Subclusters were classified as having FC versus PC skew if they 1) exhibited > 3:1 compo-

sitional difference between FC and PC and 2) p < 0.05 (Bonferroni-adjusted) using Barnard’s exact test. To quantify the number of

differentially expressed genes between frontal and posterior cortical cells within each subcluster, differential expression was

performed using the binomTest from the edgeR package (Robinson et al., 2010), using a fold-change threshold of 2, and a Bonfer-

roni-adjusted P value of 0.05.

Correlation analysis across cell populations
We generated subcluster-level profiles by summing the integer counts of each cell in each subcluster together to form 565 distinct

profiles (Figures S7A and S7B). To compare pairwise correlations across nAChR subunits, all 565 profiles were selected and normal-

ized to 100K UMIs. Pearson correlations were calculated across all genes using linear expression data and grouped via hierarchical

clustering using the heatmap.2 function of the gplots R package. Note, Chrna3/Chrnb4/Chrna5 are adjacently located on chromo-

some 9;Chrna4/Chrnb2 genes are on chromosome 2 and 3, respectively. For voltage gated Na and K alpha subunit analysis, only the

323 profiles corresponding to neurons were used and the gene set was thresholded to include only those genes with > 1 out of 100K

transcripts. Scatterplots of profile expression were displayed in log10 space.

Neuron classification in the GP/NB and SN/VTA
In dot plots, dot diameter represents the fraction of cells within a subcluster where a transcript was counted. Colors represent

average single-cell scaled expression value (out of 100K UMIs, log10).

Transcriptional diversity of striatal SPNs
To identify differentially expressed genes across SPN populations, we first generated subcluster-level profiles by summing

the integer counts of each cell in each SPN subcluster. Differentially expressed genes exhibited > 2 fold differences and had

p < 10�100 based on the binomTest (Robinson et al., 2010) and were visualized in SPN scatterplots with large, dark dots. Non-eSPN

subclusters (13-6, 13-7, 13-8, 13-9 and 13-10) were excluded from the differential expression analysis described in Figure S7I.

DATA AND SOFTWARE AVAILABILITY

The accession number for the sequencing data reported in this paper is GEO: GSE116470. Processed sequencing files – including

single-cell DGEs for each region and DGEs of cell populations based on subcluster assignments – are also available from the DropViz

website (http://dropviz.org/).

ADDITIONAL RESOURCES

Dropviz
To present data for exploration, analysis and sharing, we developed a web-based application called DropViz. The application allows

a user to filter cells in the atlas data by brain region, cell class, cell cluster and cell type. The application displays global and cluster-

specific t-SNE plots of the filtered cells. Users can also search by gene name and then overlay relative gene expression on t-SNE

plots or display a ranked plot of gene expression. The application provides a scatterplot to compare the relative expression between

two cell sets, which allows for the identification of differentially expressed genes. The source code is available at https://github.com/

broadinstitute/dropviz.
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Supplemental Figures

Figure S1. Comprehensive Identification of Brain Cell Classes, Related to Figure 1

(A) Example single-cell suspension generated from frontal cortex that contained little debris and exhibited diverse cellular morphologies. Bottom, enlargements of

example cells.

(B) T-distributed stochastic neighbor embedding (tSNE) plot of gene expression relationships among the n = 113,171 cell hippocampus dataset based on the first

round of ICA-based clustering (see Figure 1B). Left, tSNE plot color-coded based on ‘‘global’’ clusters (numbered 1-19). Right, tSNE plot color-coded based on

major cell classes of the brain.

(C) Violin plots showing example gene markers that distinguish across and within brain cell classes (log10). Genes are color-coded by cell class. Global clusters

are ordered by cell class.

(D) Cartoons of the major cell classes of the brain. Numbers below indicate the corresponding global clusters from hippocampus.

(E) Dot plots displaying the proportional representation of individual cell classes across regions. Themajor trend suggests that neuronal proportions vary inversely

with those of oligodendrocytes, endothelial cells, and mural cells. Fibroblast-like cells comprised a similar proportion of all cells in each region. Polydendrocyte

and astrocyte abundance appeared to vary independently of other cell classes, exhibiting enrichment in the GPe as expected based on earlier findings (Cui et al.,

2016). Small fractions of choroid plexus and ependymal cells were sampled from ventricle-adjacent regions, while sparse neurogenic populations were observed

in regions adjacent to the subventricular and subgranular zones (frontal cortex, striatum, and hippocampus) (Ming and Song, 2011). These trends could be driven

both by endogenous regional variation and differences in tissue preparation (Table S1).

(F) Number of subclusters by region.

(G) Transcriptional correlations across atlas subclusters are largely explained by cell class and not region of origin. Hierarchical clustering diagram showing

pairwise Pearson correlation scores calculated pairwise between 565 atlas subcluster populations. The analysis was restricted to geneswith significantly variable

expression (STAR Methods). Color-coded bars at the top of the plot display the ordered region/cell class assignments for the subcluster.



(legend on next page)



Figure S2. ICA-Based Subclustering Identifies Interpretable Transcriptional Signals that Can Be Used to Remove Technical Artifacts and

Create Transparent Signal-Cluster Relationships, Related to Figure 1

(A and B) Comparison of Independent component analysis (ICA) versus principal component analysis (PCA) in encoding cell type/state distinctions from scRNA-

seq data. ICs encode transcriptional sources such as cell types with single components; PCs encode the same sources through complex combinations of

components. Here we use the ICs/PCs identified from the Frontal CortexCplx3+/Synpr+ interneuron subcluster analysis (Cluster 1). Subclusters were first defined

by n = 9 non-technical ICs (‘‘Biological ICs’’; see Figure 1, STAR Methods). On the same dataset, the first n = 9 PCs were also identified.

(A) Cell-loadings for IC 10 and PC 9 displayed on an IC-based tSNE plot. Both IC 10 and PC 9 loadings are highest in a group of cells (arrowheads) that we

subsequently identify as subcluster 1-7 (Synpr+/Dpy19l1+). High IC 10 loading is almost completely restricted to this group. PC 9, however, exhibits a range of

loadings in other parts of the tSNE plot. Thus IC 10 exclusively encodes this particular group of interneurons, whereas PC 9 encodes an abstract signal

differentially distributed over different interneuron subsets.

(B) ICs exhibit singular relationships to clusters built from single-cell transcriptomes, whereas PCs are distributed in combinations. IC-based hierarchical

clustering of single-cells from subcluster 1-7. Cell-loadings based on n = 9 PCs or n = 9 ICs are plotted, with high loading in yellow and low loading purple. Results

are similar if hierarchical clustering is performed with PCs.

(C) Examples of replicate and doublet ‘‘technical’’ ICs from frontal cortex. Top, example of an independent component (IC 38, cluster 6) representing a replicate-

based signal. Left, plot of cell-loading scores (y axis). On the x axis, cells are ordered by library size (largest to smallest) within each sequencing pool (color-

coded). Sequencing pools from the samemouse are grouped with black and gray bars above. Center, cell-loading scores plotted on the subcluster 6 tSNE (tSNE

constructed from all ICs). Higher loadings are shown in darker red. Right, gene-loading plot. The n = 10 genes with the highest scores are shown at right. Bottom,

example of a component (IC 15, cluster 6) representing a ‘‘doublet’’ signal. Plots and layout are similar to the above. IC 15 loads heavily on a small number of cells

across mice and sequencing pools. The top loading genes are markers of the polydendrocyte cell class, suggesting a signal that represents a ‘‘doublet’’

transcriptome consisting of layer 2/3 neurons and polydendrocytes. Inset shows area of the tSNE plot with high IC 15 loading.

(D–G) Experimental identification of transcriptional signals related to preparation of acute brain into single cells and examples of these digest-related ‘‘technical’’

ICs in frontal cortex. (D) Schematic illustrating ‘‘over’’ and ‘‘under’’ digest experiments. Instead of optimal protease digest times (STAR Methods) for Frontal

Cortex (FC) or Hippocampus (HP) (optimal: FC, 2hrs; HP, 1.5), regions were under-digested (1 hr) or over-digested (3 hr) before Drop-seq library creation. (E and F)

Digest-associated ICs encode a similar transcriptional signal exhibited across regions and cell classes. (E) Digest-skew plots for subclustering ICs. Under and

over-digest Drop-seq libraries were grouped by region co-analyzed using our ICA-based system. For every IC identified through subclustering, cell-loadings

scores were grouped by digest condition and compared using a rank-sum test. The resulting P values are plotted on the y axis. Each IC is represented by a dot

and ordered by P value within each subcluster analysis (color-coded and labeled by cell class). The size of the dot represents average difference in loading

between digest groups. Lower P values and larger dots are indicative of ICs that encode digest time. Digest-related signals are largely restricted to 1 or 2 ICs with

neuron and astrocyte cell classes. A P value cut-off of –log10 > 20 was used as a threshold to define digest-related ICs (dotted line). (F) Pairwise mutual in-

formation analysis based on n = 251 shared genes highlights a similar signal encoded by digest-related ICs. The gene contributions to this signal are charac-

terized in (G) and this signal is also present in our atlas datasets (H). (G) Example of digest-related ICs from FC co-analysis of under- and over-digested cells. Left,

cell loadings color-coded by digest condition. Right, gene-loading plots for the 10 top and bottom loading genes. IC 15 (cluster 2,Syt6+ deep-layer glutamatergic)

and IC 68 (cluster 1, Nptxr+ upper-layer glutamatergic) show contributions from similar genes. Genes related to ATP synthesis and Calmodulins (eg., Cox6a1,

Ndufa4, Calm2) load on the under-digested cells, while another set of genes including the nuclear-enrichedMeg3 andMalat1 load highly onto the over-digested

condition.

(H) Digest-related ICs were commonly observed in atlas subclustering analyses, suggesting heterogeneity in cellular transcriptional response to identical

preparation conditions. Two examples of digest-related ICs from atlas FC cluster 6 (20 and 23). Left, cell-loading plots and insets highlight the correlation of IC

loading to library size. IC 20 tends to load on smallest libraries, while IC 23 loads on the largest. Middle, cell-loadings for IC 20 and 23 demonstrate that digest-

related signals contribute to local relationships within the subcluster 6 tSNE plot. Right, gene-loading plots for the 10 top and bottom loading genes indicate a

similar signal to that identified in over and under-digested experiments. Digest-related ICs were excluded from downstream atlas subclustering analyses.

(I) Removing technical ICs prevents spurious transcriptional similarities. Example tSNE cell-loading plot for cluster 6 digest-related IC 23 before and after IC

curation. Before curation, cells with high loading of digest-related IC 23 (E, bottom left) are locally grouped. After curation, technical ICs (including IC 23) are

removed, creating a different tSNE plot and preventing the digest-related effects from contributing to clustering.

(J and K) Illustration of subclustering strategy based on Biological ICs. (J) Correspondence between heterogeneous transcriptional signals (Biological ICs) and

subclusters identified by modularity clustering (Similar to Figure 1E, but for Frontal Cortex cluster 1). tSNE cell-loading plots for each of the n = 11 Biological ICs.

Bottom right, the resulting plot in which the n = 11 subclusters are identified. (K) Portfolios of subclustering solutions. We select the solution that most appro-

priately represents the underlying ICs cell-loading structure (STAR Methods). To generate the portfolio, we varied both the number of neighbors in the underling

network graphs (k) as well as the resolution of the (k) of the cluster assignments. Here we present a sample of the portfolio for Frontal Cortex cluster 1 (top, shown

in (J)) or cluster 6 (bottom, from Figure 1E). The selected solutions are boxed.



Figure S3. Identifying Ion Channel Gene-Gene Co-expression Relationships from Hundreds of Cell Populations, Related to Figure 4
(A) The number of individual single-cell profiles that contribute to each of the 565 transcriptionally-similar cell populations identified in the atlas (median =

171 cells, mean = 565).

(B) Receiver operating curve analysis of cell populations and synthetic bulk tissue nAChR subunit correlation distributions. Known nAChR subunit interactions

(Gotti et al., 2006) were treated as true positives to calculate true positive rate and false positive rate. Red, pairwise nAChR gene correlations calculated from

subcluster profiles; green, same correlations computed from ‘‘synthetic bulk’’ tissue, in which each tissue replicate was separately summed (n = 42); blue,

subcluster profiles in which data are randomly permuted to yield the same mean expression but random values.

(C) Expression levels of the n = 17 nAChR subunits across the 565 cell populations. Genes are color-coded by family and labeled according to traditional brain/

muscle association.

(D) List of the neuronal populations identified as exhibiting fast action potential firing rates by region.

(E) Genes most frequently correlated with the n = 15 genes that make up the correlation block associated with action potential firing rate (Figure 4D). For each

gene, the top n = 25 most highly correlated genes were identified, producing a total list of 375 genes. The bar plot reflects the gene frequencies, displaying only

those genes with three or more counts.



Figure S4. Comparing Intact Tissue to Single-Cell Suspensions and Drop-Seq Datasets to Determine Cell Recovery Rates and Acquisition

Biases at the Level of Cell Class, Cell Type, and Cell Subtype, Related to Figure 5

(A and B) Estimating the fraction of brain cells recovered in single-cell suspensions generated from intact tissue. To aid in the identification of single cells, we used

Nestin-Cre;lsl-ZsGreen mice in which the ZsGreen fluorophore is enriched in the soma of heterogenous set of brain cell classes. (A) ZsGreen reporter fluo-

rescence identifies single cells in suspension (left) and in intact Frontal Cortex (right, sagittal section). (B) To approximate cell recovery rates from intact tissue, we

estimated the total number of ZsGreen+ cells in a fixed volume of intact Frontal Cortex and Striatum using stereological counting and compared those starting

totals to the number of cells estimated to be recovered in suspension (STARMethods)(Tissue, n = 2mice, n = 12-22 confocal stacks/mouse, n = 108-181 sampling

boxes/mouse; Suspension, n = 5 mice, n = 6 samples/suspension). Boxplot shows estimates per mouse (color-coded).

(C) Recovery fraction (total suspension / total tissue) by region. Error bars indicate standard error of the mean recovery fraction and account for error estimated in

the tissue and suspension means.

(D–K) Addressing acquisition bias at the level of cell class, cell type and cell subtype. Biases in acquisition could result from at least two sources: 1) tolerance to

dissociation and 2) transcript abundance, as larger libraries are more likely to be distinguished as cells from background (STAR Methods). (D–F) Cell class

acquisition bias. The fraction of neurons, astrocytes, oligodendrocytes/polydendrocytes and microglia were estimated in tissue using stereological counts

ascertained from confocal stacks of tissue in which cell classes were labeled with or immunohistochemistry (IHC) or transgenes expressing GFP. Drop-seq

estimates were made by calculating the total number of cells assigned to all Global clusters of a given class. (D) Two sets of experiments (n = 3 cell classes/

experiment) were used to estimate the relative fraction of neurons, astrocytes, oligodendrocytes/polydendrocytes and microglia in intact tissue. Top, in the first

set of experiments, GFP was expressed in astrocytes using the Aldh1l1-GFP line, neurons were stained with NeuN and oligodendrocytes/polydendrocytes were

labeled with Olig2 (n = 34 imaging fields from n = 1mouse). In the second set of experiments (bottom), the GFP driver line was replaced with Cx3cr1-GFP to target

microglia and the IHC labels remained the same (n = 36 and 32 imaging fields from n = 2 mice). (E) Boxplot comparing cell class fractions per mouse estimated

from intact tissue versus Drop-seq. (F) Transcript abundance distributions differ by cell class. Boxplot of single-cell transcript counts (log10) grouped and ordered

by cell class. Neurons have larger Drop-seq libraries than non-neurons. Larger libraries could partially account for overrepresentation of neurons. (G–I) Cell type

(legend continued on next page)



acquisition bias. The ratio of excitatory (glutamatergic) to inhibitory (GABAergic) neurons was estimated using smFISH and high-throughput imaging. Drop-seq

estimates were made by counting the number of cells within glutamatergic or GABAergic subclusters. (G) Cocktails of ISH probes against genetic markers of

glutamatergic (Slc17a6/7/8) andGABAergic (Gad1/2) neurotransmission identify excitatory and inhibitory neuron populations. Automated co-localization analysis

performed on slide-scans identified n = 487,003 neurons (n = 3 mice). (H) Boxplots of E/I ratios from ratio (10:1 versus 5:1) as measured by smFISH. individual

mice estimated from smFISH and Drop-seq. On average, Drop-seq datasets exhibit twice the E/I (I) Boxplots of single-cell transcript abundance by neuron type

(log10). Excitatory neurons have larger transcript abundance distributions than inhibitory interneurons, which could contribute to the increased E/I ratio in Drop-

seq datasets.

(K–M) Cell subtype acquisition bias. The ratio of major inhibitory neuron classes was estimated using smFISH and high-throughput imaging. Drop-seq estimates

were made by counting the number of cells within subclusters enriched for one or more interneuron markers. (K) ISH probes against interneuron markers Pvalb,

Sst and Vip were used to identify interneuron subpopulations. Automated co-localization analysis performed on slide scans identified n = 68,734 interneurons

(n = 3mice). (L) Boxplots of interneuron subtype fractions estimated from smFISH andDrop-seq. Drop-seq datasets are enriched for Vip+ interneurons at the cost

of Pvalb+ and Sst+ interneurons. (M) Boxplots of single-cell transcript abundance by interneuron subtype (log10). Larger libraries in Pvalb+ and Sst+ interneurons

cannot explain their relative depletion compared to Vip+ interneurons.



Figure S5. Cell-Class-Based Transcriptional Comparison of Cortical Regions, Related to Figure 5

(A) tSNE plot color-coded by the n = 7 excitatory subclusters with greater than 3:1 cell representation skew from FC or PC (and p < 0.05, Barnard’s test, see

Figure 5C). The subcluster number is shown, along with a colored dot to represent the skewed region (FC, salmon color; PC, blue).

(B) tSNE based gene plots (top) and ISH stains (bottom, Allen) for markers enriched in each of the skewed clusters. Arrows point to high expression areas.

Equivalent data for subclusters 21 and 5 are shown in Figure 5D.



Figure S6. Inferring the Anatomical Location of Subclusters from the GP/NB Cluster 2 and SN/VTA Cluster 3 Analysis using ISH Patterns of

Marker Genes, Related to Figure 6

(A) tSNE color-coded by subclusters originating from subcluster analysis of GP/NB Cluster 2, which encodes mostly non-Striatal GABAergic and glutamatergic

neurons.

(B) Subclusters color-coded by candidate anatomical regions.

(C) Dot plot illustrating the expression patterns of neurotransmitter marker genes and novel pairs of markers identified across all n = 25 subclusters in this analysis.

Dot diameter represents the fraction of cells within a subcluster where a transcript was counted. Color scale represents average single-cell scaled expression

value (out of 100K UMIs, log10).

(D) ISH experiments (Allen) illustrating the spatial expression patterns of single, selective marker genes for each subcluster. Subclusters are grouped by inferred

anatomical location.

(E–H) Same plots and organization as above, but for SN/VTA Cluster 3 that encodes mostly GABAergic and glutamatergic neurons of the SNr and VTA.



(legend on next page)



Figure S7. Molecular Specializations within Spiny Projection Neurons Subtypes, Related to Figure 7

(A–E) Identification and comparison of patch iSPN and dSPN transcriptomes. (A) Color-coded subcluster assignments for striatum cluster 10 (dSPNs) and cluster

11 (iSPNs) displayed on tSNE plot. (B) ICs encoding patch-specific transcriptional signals in dSPNs (IC 15) and iSPNs (IC 20). Left, IC cell-loadings on tSNE plots.

Right, gene-loadings with top 10 genes displayed. A full description of biological ICs resulting from SPN subcluster analyses is presented in (Data S6). (C)

Identification of shared and distinct dSPN and iSPN patch-enriched genes. Scatterplot comparing gene loadings between patch ICs for dSPNs (IC 15) and iSPNs

(IC 20). Geneswith high loading in both ICs are hypothesized to be enriched in both patch iSPNs and dSPNs. This group includes described (Tac1) and previously

undescribed (Tshz1) genes enriched in patch dSPNs and iSPNs. Genes that load strongly onto either IC are candidates for patch molecular specialization by SPN

pathway. For example, among matrix SPNs, Asic4was selectively expressed in the dSPNs but not iSPNs; among patch SPNs, however, Asic4was expressed in

both dSPNs and iSPNs. ThusAsic4 helps tailor iSPNs but not dSPNs to the patch habitat. (D) ISH stains for Tac1 and Tshz1 on coronal sections of striatum (Allen).

Arrowheads point to example patches. (E) Expression tSNE plots forAsic4 andNecab1 illustrating patch enrichment exclusive to iSPNs and dSPNs, respectively.

(F–H) Identifying non-eSPNs in Cluster 13. (F) Color-coded subcluster identities. Subclusters labels in black correspond to eSPNs; labels in red correspond to

non-Striatal neurons (G) Expression of SPN marker Ppp1r1b is enriched in eSPN subclusters. (H) Non-eSPN subclusters express unique markers that suggest

non-Striatal origins. Left, expression of markers on tSNE plots. Right, ISH stains for each marker gene (Allen). Top, Slc17a7 expression suggests subclusters

13-6, 13-7 and 13-8 originate from adjacent cortex. Middle, Cartpt expression suggests subcluster 13-9 originates from the Bed Nucleus of the Stria Terminalis.

Bottom, Nfib expression suggests subcluster 13-10 originates from the Amygdala. Red arrows point to regions of interest.

(I) eSPNs and SPN populations that express the same pathway markers are transcriptionally distinct. Genome-wide gene mean expression comparisons

between Drd1+ or Adora2a+ SPN and eSPN subtypes (log normal scale). Left, Drd1+ eSPN subclusters (13-1, 13-2, 13-3 versus Drd1+ SPN Cluster 10. Right,

Adora2a+ eSPN subclusters (13-4 & 13-5) versus Adora2a+ Cluster 11. Differentially expressed genes are shown with larger, dark dots (> 2 natural log fold

difference and p < 10�100, binomTest (Robinson et al., 2010) and total number listed above each plot.
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