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Fig. 4. Slide-seq identifies local transcriptional responses to injury.
(A) (Top) All mapped beads for a coronal hippocampal slice from a mouse
euthanized 2 hours after injury, with circle radius proportional to tran-
scripts. (Bottom) Genes marking the injury. (B) As in (A) for a mouse
euthanized 3 days after injury. (Top and middle right) DAPI (4′,6-diamidino-
2-phenylindole) stained image of an adjacent slice. Panels with black
backgrounds show NMFreg cell types as density plots. Scale bar: 250 mm
(7). (C) As in (B) for a mouse euthanized 2 weeks after injury. Bottom
scale bars: 500 mm. (D) Spatial density profiles for the puck in (B) (7).
(E) Spatial density profiles for the puck in (C). Lyz2 is plotted as a marker

of macrophages. The vertical axis in (D) and (E) represents cell type
density in arbitrary units (7). ML, mitotic layer; AS, astrocytic scar;
MM, microglia-macrophage distance; MP, microglia penetration.
(F) Thickness of features in (D) and (E) (mean ± SD, N = 6 measurements
for scar, N = 6 for penetration, N = 3 for mitosis layer). (G to J) Gene
ontology–derived metagenes for the puck in (B) (top) or (C) (bottom).
(K) The IEG metagene (table S2) for two 2-week pucks. In (G) to (K),
warmer colors correspond to greater metagene counts. The 1-mm scale
bar in (A) pertains to the circular images in (A) to (C). All scale bars for
images with blue backgrounds: 500 mm. Red arrows indicate the injury.
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analysis to these gene sets revealed enrichment
of annotations relating to chromatid segrega-
tion, mitosis, and cell division at the 3-day time
point (Fig. 4G), as well as enrichment relating to
the immune response (Fig. 4H), gliogenesis (Fig.
4I), and oligodendrocyte development (Fig. 4J)
at the 2-week time point. This finding suggests
that cell proliferation occurs in the first few days
after injury and transitions to differentiation on
the order of weeks. For example, although the
degree to which oligodendrocyte progenitor cells
differentiate into oligodendrocytes after a focal
gray matter injury is controversial (27), we con-
firmed that both Sox4 and Sox10 localize to the
region surrounding the injury at the 2-week
time point, indicating the presence of imma-
ture oligodendrocytes (fig. S15). We also dis-
covered evidence that several immediate early
genes, including highly neuron-specific genes
such as Npas4 (table S2), are up-regulated in a
region of width measuring 0.72 ± 0.19 mm
(mean ± SE, N = 4 measurements) around the
injury at both the 3-day and the 2-week time
points (28–30) (Fig. 4K and table S2), suggesting
persistent effects of the injury on neural activ-
ity in a large area around the injury.
Our study demonstrates that Slide-seq en-

ables the spatial analysis of gene expression in
frozen tissue with high spatial resolution and
scalability to large tissue volumes. Slide-seq is
easily integrated with large-scale scRNA-seq
datasets and facilitates discovery of spatially
defined gene expression patterns in normal and
diseased tissues. The primary cost of Slide-seq
is the cost of short-read sequencing, which is
~$200 to $500 for the pucks presented here.
As the cost of sequencing drops further, we ex-
pect to be able to scale Slide-seq to entire organs
or even entire organisms.We anticipate that Slide-
seq will be instrumental in positioning molecu-
larly defined cell types in complex tissues and

defining molecular pathways involved in neuro-
pathological states.
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specific responses in a mouse model of traumatic−authors used this method to dissect the temporal evolution of cell type
 expression patterns in the Purkinje layer of the cerebellum and axes of variation across Purkinje cell compartments. The

 surface covered with DNA-barcoded beads. Applying Slide-seq to regions of a mouse brain revealed spatial gene
 developed a method called Slide-seq, whereby RNA was spatially resolved from tissue sections by transfer onto a

 et al.Mapping gene expression at the single-cell level within tissues remains a technical challenge. Rodriques 
Gene expression at fine scale
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