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SUMMARY

Defining cell types requires integrating diverse sin-
gle-cell measurements from multiple experiments
and biological contexts. To flexibly model single-
cell datasets, we developed LIGER, an algorithm
that delineates shared and dataset-specific features
of cell identity. We applied it to four diverse and chal-
lenging analyses of human and mouse brain cells.
First, we defined region-specific and sexually dimor-
phic gene expression in the mouse bed nucleus of
the stria terminalis. Second, we analyzed expression
in the human substantia nigra, comparing cell states
in specific donors and relating cell types to those in
the mouse. Third, we integrated in situ and single-
cell expression data to spatially locate fine subtypes
of cells present in the mouse frontal cortex. Finally,
we jointly defined mouse cortical cell types using
single-cell RNA-seq and DNA methylation profiles,
revealing putative mechanisms of cell-type-specific
epigenomic regulation. Integrative analyses using
LIGER promise to accelerate investigations of cell-
type definition, gene regulation, and disease states.
INTRODUCTION

The function of the mammalian brain is dependent upon the co-

ordinated activity of highly specialized cell types. Advances in

high-throughput single-cell RNA sequencing (scRNA-seq) anal-

ysis (Klein et al., 2015; Macosko et al., 2015; Rosenberg et al.,

2018; Zheng et al., 2017) have provided an unprecedented op-

portunity to systematically identify these cellular specializations,

across multiple regions (Saunders et al., 2018; Tasic et al., 2016;

Zeisel et al., 2018), in the context of perturbations (Hrvatin et al.,

2018), and in related species (Hodge et al., 2018; Lake et al.,

2016; Tosches et al., 2018). Furthermore, new technologies

can now measure DNA methylation (Luo et al., 2017; Mulqueen

et al., 2018), chromatin accessibility (Cusanovich et al., 2018),

and in situ expression (Coskun and Cai, 2016; Moffitt and

Zhuang, 2016; Wang et al., 2018), in thousands to millions of
cells. Each of these experimental contexts and measurement

modalities provides a different glimpse into cellular identity.

Integrative computational tools that can flexibly combine indi-

vidual single-cell datasets into a unified, shared analysis offer

many exciting biological opportunities. The major challenge of

integrative analysis lies in reconciling the immense heterogeneity

observed across individual datasets. Within one modality of mea-

surement—like scRNA-seq—datasets may differ by many orders

of magnitude in the number of cells sampled, or in the depth of

sequencing allocated to each cell. Across modalities, datasets

may vary widely in dynamic range (gene expression versus chro-

matin accessibility), direction of relationship (RNA-seq versus

DNA methylation), or in the number of genes measured (targeted

quantification versus unbiased approaches). To date, the most

widely used data alignment approaches (Butler et al., 2018; Hagh-

verdi et al., 2018; Johnson et al., 2007; Risso et al., 2014) implicitly

assume that the differences between datasets arise entirely from

technical variation and attempt to eliminate them ormap datasets

into a completely shared latent space using dimensions of

maximum correlation (Butler et al., 2018). However, in many kinds

of analysis, both dataset similarities and differences are biologi-

cally important, such as when we seek to compare and contrast

scRNA-seq data from healthy and disease-affected individuals.

To address these challenges, we developed a new computa-

tional method called LIGER (linked inference of genomic exper-

imental relationships). We show here that LIGER enables the

identification of shared cell types across individuals, species,

and multiple modalities (gene expression, epigenetic, or spatial

data), as well as dataset-specific features, offering a unified anal-

ysis of heterogeneous single-cell datasets.

RESULTS

Comparing and Contrasting Single-Cell Datasets with
Shared and Dataset-Specific Factors
LIGER takes as input multiple single-cell datasets, which may be

scRNA-seq experiments from different individuals, time points, or

species—or measurements from different molecular modalities,

such as single-cell epigenome data or spatial gene expression

data (Figure 1A). LIGER then employs integrative non-negative

matrix factorization (iNMF) (Yang and Michailidis, 2016) to learn

a low-dimensional space in which each cell is defined by one

set of dataset-specific factors, or metagenes, and another set of
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Figure 1. LIGER Approach to Integration of Highly Heterogeneous Single-Cell Datasets

(A) LIGER takes as input two or more datasets, which may come from different individuals, species, or modalities, that share corresponding gene-level features.

(B) Integrative nonnegative matrix factorization (Yang and Michailidis, 2016) identifies shared and dataset-specific metagenes across datasets.

(C) Building a graph in the resulting factor space, based on comparing neighborhoods of maximum factor loadings (STARMethods). Each cell is numbered by its

maximum factor loading and connected to its nearest neighborswithin each dataset. The shared factor neighborhood graph leverages the factor loading values of

neighboring cells to prevent the spurious integration of divergent cell types across datasets (such as the yellow cells shown).

See also Figure S1.
shared metagenes (Figure 1B). Each factor often corresponds to

a biologically interpretable signal—like the genes that define a

particular cell type. A tuning parameter; l; allows adjusting the

size of dataset-specific effects to reflect the divergence of the da-

tasets being analyzed. We found that iNMF performs comparably

to both NMF and principal-component analysis (PCA) in recon-

structing the original data (Figures S1A and S1B). After performing

iNMF, we use a novel strategy that increases robustness of joint

clustering.We first assign each cell a label based on themaximum

factor loading and then build a shared factor neighborhood graph

(Figure 1C), in which we connect cells that have similar factor

loading patterns (STAR Methods).

We derived a novel algorithm for iNMF optimization, which

scales well with the size of large single-cell datasets (Figures

S1C and S1D; STARMethods). To aid selection of the key param-

eters—the number of factors k and the tuning parameter l—we

developed heuristics based on factor entropy and dataset align-

ment (STAR Methods). Overall, these heuristics performed well

across different analyses (Figures S1I and S1J), though we have

observed that manual tuning can sometimes improve the results.

Additionally, we derived novel algorithms for rapidly updating the

factorization to incorporate new data or change parameters

(STARMethods; Figures S1E–S1H). We anticipate that this capa-

bility will be useful for leveraging a rapidly growing corpus of

single-cell data.

Liger Shows Robust Performance on Highly Divergent
Datasets
We assessed the performance of LIGER through the use of two

metrics: alignment and agreement. Alignment (Butler et al., 2018)
1874 Cell 177, 1873–1887, June 13, 2019
measures the uniformity of mixing for two or more samples in the

aligned latent space. This metric should be high when datasets

share underlying cell types, and low when datasets do not share

cognate populations. The second metric, agreement, quantifies

the similarity of each cell’s neighborhood when a dataset is

analyzed separately versus jointly with other datasets. High

agreement indicates that cell-type relationships are preserved

with minimal distortion in the joint analysis.

We calculated alignment and agreement metrics using pub-

lished datasets (Baron et al., 2016; Gierahn et al., 2017; Saun-

ders et al., 2018), comparing the LIGER analyses to those gener-

ated by the Seurat package (Butler et al., 2018). We first ran our

analyses on a pair of scRNA-seq datasets from human blood

cells that show primarily technical differences (Gierahn et al.,

2017) and should thus yield a high degree of alignment. Indeed,

LIGER and Seurat show similarly high alignment statistics (Fig-

ures 2A–2C), and LIGER’s joint clusters match the published

cluster assignments for the individual datasets. LIGER and

Seurat also performed similarly when integrating human and

mouse pancreatic data, with LIGER showing slightly higher

alignment (Figure 2C).

In both analyses, LIGER produced considerably higher agree-

ment than Seurat (Figure 2D), suggesting better preservation of

the underlying cell-type architectures in the integrated space.

We expected this advantage should be especially beneficial

when analyzing very divergent datasets that share few or no

common cell populations. To confirm this, we jointly analyzed

profiles of hippocampal oligodendrocytes and interneurons

(Saunders et al., 2018), two cell classes with very different devel-

opmental origins. LIGER generated minimal false alignment



Figure 2. Benchmarking LIGER Performance

(A and B) t-SNE visualizations of Seurat (Butler et al., 2018) (A) and LIGER (B) analyses of two scRNA-seq datasets prepared from human blood cells.

(C) Alignment metrics for the Seurat and LIGER analyses of the human blood cell datasets, human and mouse pancreas datasets, and hippocampal interneuron

and oligodendrocyte datasets. Error bars on the LIGER data points represent 95% confidence intervals across 20 random iNMF initializations.

(D and E) t-SNE visualizations of Seurat (D) and LIGER (E) analyses of 3,212 hippocampal interneurons and 2,524 oligodendrocytes. Note the small shared

population of doublets in the middle of the t-SNE, highlighting LIGER’s ability to identify rare populations.

(F) Agreement metrics for Seurat and LIGER analyses of the datasets listed in (C).

(G and H) Alignment (G) and agreement (H) for varying proportions of oligodendrocytes mixed with a fixed number of interneurons.

(I) Riverplot comparing the previously published clustering results for each blood cell dataset with the LIGER joint clustering assignments.

See also Figure S2.
between these classes and demonstrated a good preservation

of complex internal substructure (Figures 2D–2F and S2A–

S2C), even across considerable changes in dataset proportion
(Figures 2G and 2H). In each of the three analyses described

above, the LIGER joint clustering result closelymatched the pub-

lished cluster assignments for the individual datasets (Figures 2I,
Cell 177, 1873–1887, June 13, 2019 1875
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S2D, and S2E). Together, these analyses indicate that LIGER

sensitively detects common populations without spurious align-

ment and preserves complex substructure, even when applied

across divergent datasets.

Interpretable Factors Unravel Complex and Dimorphic
Expression Patterns in the Bed Nucleus
An important application of integrative single-cell analysis in

neuroscience is to quantify cell-type variation across different

brain regions and different members of the same species. To

examine LIGER’s performance in these tasks, we analyzed the

bed nucleus of the stria terminalis (BNST), a subcortical region

composed of multiple subnuclei (Dong and Swanson, 2004)

implicated in social, stress-related, and reward behaviors (Bay-

less and Shah, 2016). To date, scRNA-seq has not been per-

formed on BNST, providing an opportunity to clarify how cell

types are shared between this structure and datasets generated

from related tissues.

We isolated, sequenced, and analyzed 204,737 nuclei en-

riched for the BNST region (Figure S3A; STAR Methods). Initial

clustering identified 106,728 neurons, of which 70.2% were

localized to BNST by examination of marker expression in the

Allen Brain Atlas (ABA) (Lein et al., 2007) (Figure S3B). Clustering

analysis revealed 41 transcriptionally distinct populations of

BNST-localized neurons (Figure 3A). In agreement with previous

estimates (Kudo et al., 2012), 85.9% of the cells were inhibitory

(expressing Gad1 and Gad2), while the remaining 14% were

excitatory (expressing Slc17a6 [9.4%] or Slc17a8 [4.7%]) (Fig-

ure S3C). Examination of cluster markers in the ABA showed

that many cell types localized to specific BNST substructures,

including the principal, oval, and anterior commissure nuclei

(Figures S3C and S3D). For example, we identified two molecu-

larly distinct subpopulations in the oval nucleus of the anterior

BNST (ovBNST) (Figure 3B), a structure known to regulate anxi-

ety (Kim et al., 2013) and tomanifest a robust circadian rhythm of
Figure 3. LIGER Reveals Region-Specific and Sex-Specific Cellular Sp

(A) t-SNE visualization of 74,910 bed nucleus neurons analyzed by LIGER, color

(B) Top, feature plots showing expression ofSh3d21 andVipr2, in the LIGERBNST

expression to the BNST oval nucleus.

(C) t-SNE visualization of a LIGER analysis of 352 BNST nuclei in clusters BNST

et al., 2018) are colored by dataset (top) and LIGER cluster (bottom).

(D) Dot plot showing the relative expression of genes, by dataset, in clusters 1 an

differences in sampling between whole cells and nuclei (STAR Methods).

(E) Sagittal ABA images of Vip, Lamp5, and Id2 expression; arrows highlight the

(F) t-SNE visualization of a LIGER analysis of 8,200 nuclei, drawn from three clust

(Saunders et al., 2018). The striatal SPNsare colored according to their published clu

(G) Dot plots showing expression of canonical SPN genes in the clusters defined in

the recently described eSPN identity (Tshz1, Otof, and Cacng5), as well as two m

(H) Coronal ABA image of Cdc14a, showing exclusive expression in the rhombo

(I) Bar plot quantifying dimorphically expressed genes per BNST neuron cluster,

clusters (BNSTpr_St18 and BNSTpr_Esr2) show high numbers of dimorphic gen

(J) Cell factor loading values (top) and gene loading plots (bottom) of top loading d

on one of the BNSTpr clusters.

(K) Genes ranked by degree of dimorphism (STAR Methods); positive values ind

female expression. Positions of previously validated dimorphic genes and X and Y

genes shown in (L) are indicated in purple.

(L) Feature plots showing expression patterns of known (Greb1 and Esr1) and no

Abbreviations in in situ hybridization (ISH) images: ac, anterior commissure; ac

CP, caudate putamen; TH, thalamus. See also Figure S3 and Data S1.
expression of Per2 (Amir et al., 2004), similar to the superchias-

matic nucleus (SCN) of the hypothalamus.

Two clusters, BNST_Vip and BNSTp_Cplx3, expressed

markers of caudal ganglionic eminence (CGE)-derived interneu-

rons found in cortex and hippocampus. Part of the BNST has

embryonic origins in the CGE (Nery et al., 2002), suggesting

that this structure may harbor such cell types. To examine this

possibility, we integrated the 352 nuclei from the BNST_Vip

and BNST_Cplx3 clusters with 330 CGE interneuron cell profiles

sampled from our recent adult mouse frontal cortex dataset

(Saunders et al., 2018). Four clusters in the LIGER analysis

showedmeaningful alignment between BNST nuclei and cortical

CGE cells (Figure 3C). One population (cluster 1), which was

Vip-negative (Figure 3D) and likely localized to the posterior

BNST (Figure 3E), expressed Id2, Lamp5, Cplx3, and Npy, all

markers known to be present in cortical neurogliaform (NG) cells

(Tasic et al., 2016). A second population (cluster 2) expressed

Vip, Htr3a, Cck, and Cnr1, likely corresponding to VIP+ basket

cells. (Rudy et al., 2011) (Figures 3D and 3E). Although, to our

knowledge, NG cells have not been described in the BNST

before, cells with NG-like anatomy and physiology have been

observed within the amygdala (Ma�nko et al., 2012), a structure

with related functional roles.

Spiny projection neurons (SPNs) are the principal cell type of

the striatum, a structure just lateral to the BNST, but cells ex-

pressing the canonical SPN marker Ppp1r1b have also been

documented in multiple anterior BNST nuclei (Gustafson and

Greengard, 1990). The molecular relationship between striatal

SPNs and these BNST cells is not known. We identified three

Ppp1r1b+ populations—one specifically BNST-localized and

two without BNST-specific localization (8,200 nuclei; Figures

S3B and S3D). To relate these putative SPNs to striatal SPNs,

we used LIGER to integrate these three clusters with 10,643 pub-

lished striatal SPN profiles (Saunders et al., 2018). Many of the

nuclei from our dataset aligned to clusters 1 and 2 (Figure 3F)
ecialization in the Bed Nucleus of the Stria Terminalis

ed by cluster, and labeled by an exclusive marker.

analysis. Bottom, sagittal ABA images ofSh3d21 andVipr2, showing restricted

_Vip and BNSTp_Cplx3 and 330 CGE-derived cortical interneurons (Saunders

d 2 of the analysis shown in (C). Each dataset is scaled separately to reconcile

signal present in the BNST.

ers positive for the SPN marker Ppp1r1b (Figure S3), and 10,643 striatal SPNs

stering into threemajor transcriptional categories (direct, indirect, and eccentric).

(F). Markers include those of iSPN identity (Adora2a), dSPN identity (Drd1), and

arkers of the BNST-specific cluster 4 (Cdc14a and Hcn1).

id nucleus of the anterolateral BNST.

identified by a bootstrap analysis (STAR Methods). Note that the two BNSTpr

es.

ataset-specific and shared genes (bottom) for factor 27, which loads primarily

icate increased expression in males, while negative values indicate increased

chromosome genes are indicated in blue and red, respectively. The two novel

vel (Elt4 and Acvr1c) dimorphic genes across BNST neurons.

t, anterior commissure, temporal limb; ov, oval nucleus; st, stria terminalis;
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Figure 4. LIGER Allows Analysis of Substantia Nigra across Individuals and Species

(A and B) Uniform manifold approximation and projection (UMAP) plots of a LIGER analysis of 44,274 nuclei derived from the SN of 7 human donors, colored by

donor (A) and major cell class (B).

(C) Violin plots showing expression of marker genes across the 25 human SN populations identified by two rounds of LIGER analysis.

(D–F) UMAP plots showing cell factor loading values (top) and gene loading plots (bottom) for factors corresponding to an acutely activated polydendrocyte state

(D), an activatedmicroglia state (E), and a reactive astrocyte state (F). In gene loading plots, gene names are sorted in decreasing order ofmagnitude of their factor

loading contribution and correspond to colored points in scatterplots. Plots are organized to show the metagene specific to tissue donors MD5828 and MD5840

and the shared metagene common to all datasets. Genes mentioned in the text are boxed.

(legend continued on next page)
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corresponding to canonical striatal SPNs of the indirect spiny

projection neuron (iSPN) and direct spiny projection neuron

(dSPN) types, respectively. A second population of our nuclei

aligned to cluster 3, containing the striatal eccentric spiny pro-

jection neurons (eSPNs) we recently described (Saunders

et al., 2018). A fourth population, cluster 4, expressed markers

localizing it exclusively to the rhomboid nucleus of BNST (Figures

3G and 3H). These results suggest that the BNST contains a

combination of SPN-like neurons with high homology to striatal

SPNs, while also harboring at least one Ppp1r1b+ population

with tissue-specific specializations.

In addition to its high molecular and anatomical diversity,

BNST also displays significant sexual dimorphism, both in size

(Allen and Gorski, 1990; Hines et al., 1992) and gene expression

(Xu et al., 2012). To identify cell-type-specific BNST dimorphism,

we used LIGER to identify sex-specific metagene factors. X and

Y chromosome genes such as Xist, Tsix, Eif2s3y, Ddx3y, andUty

showed high loading values on dataset-specific factors, rein-

forcing that these factors captured dimorphic gene expression.

We then used the dataset-specific factor loadings to quantify

the number of cell-type-specific dimorphic genes for each clus-

ter (STAR Methods).

Our analysis revealed a complex pattern of dimorphic expres-

sion involving differences across many individual cell types.

Clusters BNSTpr_St18 and BNSTpr_Esr2 from the BNST prin-

cipal nucleus (BNSTpr) showed some of the highest numbers

of dimorphic genes (Figure 3I), consistent with previous reports

that BNSTpr is particularly dimorphic (Hines et al., 1992; Xu

et al., 2012). To illustrate the interpretability of the factorization

and the complexity of the dimorphism patterns it reveals, we

plotted the loading pattern and cell-type-specific dimorphic

genes derived from one particular factor (factor 27) that loads

strongly on the BNSTpr_St18 cluster (Figure 3J). Among the

top dimorphic genes for this factor were Xist, Tsix, and Etl4.

We devised a metric from the LIGER analysis to rank genes by

their cell-type-specific dimorphism (Figure 3K; STAR Methods),

flagging genes expressed at higher levels in male or female

within a specific population. Among 12 genes previously

confirmed to be dimorphic in BNST (Xu et al., 2012), we found

that most had high cell-type-specific expression metrics. We

also identified new dimorphic genes, often with complex cell-

type-specific dimorphisms across the many BNST subpopula-

tions (Figure 3L; Data S1).

Integration of Substantia Nigra Profiles across Different
Human Postmortem Donors and Species
Profiling of individual nuclei from archival postmortem human

brain samples (Habib et al., 2017; Lake et al., 2016) provides

an exciting opportunity to comprehensively characterize tran-

scriptional heterogeneity across the human brain. However,

many ante- and postmortem variables create complex technical

variation in gene expression, complicating efforts to identify bio-

logical variation in cell state. To explore howwell LIGER can inte-
(G) GO terms enriched in homologous genes with strong expression correlation

(H) GO terms enriched in homologous genes with weak expression correlation. Co

of genes associated with each GO term in (G) and (H).

See also Figure S4.
grate individual human postmortem samples, we isolated and

sequenced 44,274 nuclei derived from the substantia nigra

(SN) of seven individuals designated as neurotypical controls

(STARMethods). The SN is a subcortical structure that functions

in reward and movement execution and degenerates in Parkin-

son’s disease. Despite considerable inter-individual variation

(Figure S4A), LIGER accurately integrated each of the cell-type

substituents of the SN across datasets (Figure 4A). Specifically,

we identified 24 clusters spanning all known resident cell

classes: astrocytes, fibroblasts, mural cells, microglia, neurons

(including TH+ dopaminergic neurons and multiple inhibitory

types), oligodendrocytes, and oligodendrocyte progenitor cells

(polydendrocytes) (Figures 4B and 4C).

Glial activation is an important hallmark and driver of many

brain diseases, including neurodegeneration and traumatic brain

injury (TBI). To uncover datasets with atypical glial expression

patterns, we examined the dataset-specific metagenes of glial

cell types. The dataset-specific component of factor 28 showed

that subject MD5828 had high expression of immediate early

genes within polydendrocytes (Figure 4D), consistent with an

acute injury (Dimou et al., 2008). Although this subject was coded

as a control, the cause of death strongly suggested brain trauma

(STARMethods). In addition, the MD5828-specific metagene for

factor 5, which was microglia specific, had high loadings of

TMSB4X and CSF1R, both of which play important roles in the

acute response to TBI (Luo et al., 2013; Xiong et al., 2012). By

contrast, in subject 5840, the dataset-specific loadings on the

microglial factor 5 included genes upregulated in response to

amyloid deposition (Figure 4E). Review of this subject’s post-

mortem report revealed a histological diagnosis of cerebral

amyloid angiopathy (CAA), in which amyloid deposits within

the walls of CNS vasculature. Intriguingly, two of the three genes

known to cause hereditary CAA (Biffi and Greenberg, 2011),

CST3 and ITM2B, were also strong contributors to MD5840-

specific factor 5. In an astrocyte-specific factor (factor 20), sub-

ject MD5840 showed remarkable upregulation of multiple genes

involved in protein misfolding response (Figure 4F) (Tsaytler

et al., 2011), several of which are known to be amyloid-respon-

sive (Bruinsma et al., 2011).

A deeper understanding of cell types often arises from compar-

isons across species. We therefore used LIGER to compare our

newly generated humanSNdatawith a recently published dataset

from themouse SN (Saunders et al., 2018). The joint analysis iden-

tified both corresponding broad cell classes across species and

subtler cell types within each class after a second round of anal-

ysis (Figures S4B–S4F). In our subanalysis of the neurons, LIGER

avoided false-positive alignments of human profiles to mouse cell

types outside the dissection zone of the human tissue (Figures

S4G and S4H). Overall, we observed strong concordance be-

tween mouse and human cell clusters, consistent with a recent

analysis of mouse and human cortex (Hodge et al., 2018).

Understanding how expression of homologous genes within

the SN differs across species could reveal differences in how
across SN clusters in the LIGER comparative analysis of human and mouse.

lors indicate false discovery rate, while size of the circles indicates the number
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these genes function within the tissue. We performed gene

ontology (GO) term enrichment analysis to evaluate whether

genes with the highest and lowest correlation across species

share any functional relationships. Homologous gene pairs

with high expression correlation were enriched for GO terms

related to brain cell identity and basic molecular functions,

including ion channels, transcription factors, transmembrane

receptors, and extracellular matrix structural components (Fig-

ure 4G). In contrast, the least correlated homologous gene

pairs were enriched for basic metabolic processes, such as

macromolecule metabolism and DNA repair (Figure 4H). Intrigu-

ingly, genes involved in chromatin remodeling (sharing the GO

function ‘‘chromatin organization’’) also showed less expres-

sion conservation, hinting at species differences in epigenetic

regulation.

Integrating scRNA-Seq and In Situ Transcriptomic Data
Locates Frontal Cortex Cell Types in Space
Spatial context is an important aspect of cellular identity, but

most studies have used scRNA-seq from dissociated cells to

define cell types. Integrating these data types using LIGER could

offer two potential advantages compared to separate analyses:

(1) assigning spatial locations to cell clusters observed in data

from dissociated cells; and (2) increasing the resolution for de-

tecting cell clusters from the in situ data.

We jointly analyzed frontal cortex scRNA-seq profiles (Saun-

ders et al., 2018) and in situ spatial transcriptomic data from

the same tissue generated by STARmap (Wang et al., 2018).

These two datasets differ widely in number of cells (71,000

scRNA-seq versus 2,500 STARmap) and genes measured per

cell (scRNA-seq is unbiased, while STARmap is targeted).

Nevertheless, LIGER correctly defined joint cell populations

across the datasets (Figures 5A and 5B), with expression of

keymarker genes confirming the correspondence of cells across

these different modalities (Figure 5C). Only one population in the

scRNA-seq data was dataset specific, corresponding to cells

from the claustrum, an anatomical structure not included in the

STARmap field of view (Figure S5A). Our integrated analysis

spatially located each of the jointly defined populations (Fig-

ure 5D) and reflected the known spatial features of the mouse

cortex, including meninges and sparse layer 1 interneurons at

the surface, excitatory neurons organized in layers 2–6, and

oligodendrocyte-rich white matter below the cortex (Figure 5D).

One replicate of the STARmap data also showed a chain of

endothelial cells running through the cortex, likely a contiguous

segment of vasculature (Figure 5D). The success of this integra-

tive analysis is especially noteworthy given the very different
Figure 5. Locating Cortical Cell Types in Space Using scRNA-Seq and

(A and B) t-SNE plots of a LIGER analysis of 71,000 frontal cortex scRNA-seq profile

colored by technology (A) and LIGER cluster assignment (B). Labels in (B) derive fro

(C) Dot plot showing marker expression for STARmap cells (top line of each gen

(D) Spatial locations of STARmap cells colored by LIGER cluster assignments.

(E) Density plot showing proportion of cells in which each gene is detected for th

(F–H) t-SNE plots and spatial locations for LIGER subclustering analyses of inter

(I) Violin plots of marker genes for two astrocyte populations identified in subclus

(J) Spatial coordinates for Gfap-expressing astrocyte populations (two STARma

(K) Gfap staining data from the Allen Brain Atlas showing localization of Gfap to

See also Figure S5.
global distributions of gene expression values in the scRNA-

seq data compared to the STARmap data (Figure 5E).

Incorporating the scRNA-seq data also identified cell popula-

tions from STARmap with greater resolution than the published

clustering. Specifically, we identified 7 interneuron clusters and

5 glial clusters compared to 4 and 2 clusters, respectively, in

the initial STARmap analysis. These additional populations ac-

corded well with cell-type distinctions defined in the original

scRNA-seq analysis. The 5 glial clusters we identified included

two astrocyte clusters, polydendrocytes, and two clusters of

oligodendrocytes (Wang et al., 2018). The two astrocytic sub-

populations expressed patterns of marker genes consistently

between both the scRNA-seq and STARmap datasets (Fig-

ure 5F). The larger population expressed high levels of Mfge8

and Htra1, while the second population showed high expression

ofGfap (Figure 5F). TheGfap-expressing astrocyte population is

located outside the cortical gray matter, in both the meningeal

lining and the white matter below layer 6 (Figures 5G and 5H),

consistent with a more fibrous identity. In contrast, the

larger second population of astrocytes was spread uniformly

throughout the cortical layers, consistent with a protoplasmic

phenotype. Identifying the localization of the Gfap-expressing

astrocyte population also clarified our human-mouse SN anal-

ysis (Figure S4E), suggesting that this same Gfap-expressing

population is likely missing from the human data because of

dissection differences. These results show the power of jointly

leveraging large-scale scRNA-seq and in situ gene expression

data for defining cell types in the brain.

We also investigated whether it is possible to predict the

spatial patterns of genes not assayed by STARmap. To do

this, we assigned each STARmap cell to the average of its near-

est scRNA-seq neighbors in the aligned factor space (STAR

Methods). Comparison of predicted gene patterns with the

ABA showed that LIGER is able to reveal even complex spatial

expression patterns across many individual genes (Figures

S5B–S5D). Most high-error genes either showed technical differ-

ences in measurement between STARmap and scRNA-seq

(e.g., Aldoc, Tsnax, Hlf) or possessed no obvious spatial pattern

(e.g., Elmo1, Glul, Scg2) (Figures S5E–S5G).

LIGER Defines Cell Types Using Both Single-Cell
Transcriptome andSingle-Cell DNAMethylation Profiles
Linking single-cell epigenomic data with scRNA-seq would open

exciting avenues for investigation. First, it is unknown whether

clusters defined from gene expression reflect epigenetic distinc-

tions and vice versa. Second, integrating single-cell epigenomic

and transcriptomic data provides an opportunity to study the
STARmap

s (Saunders et al., 2018) and 2,500 cells profiled by STARmap (Wang et al., 2018)

m the published annotations of the Drop-seq dataset.

e) and Drop-seq cells (bottom line) across LIGER joint clusters.

e scRNA-seq (red) and STARmap (blue) datasets.

neurons (F), pyramidal neurons, (G), and glia (H).

tering analysis of glia.

p replicates shown).

both meninges and white matter layer below cortex.
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Figure 6. Defining Cortical Cell Types Using Both scRNA-Seq and DNA Methylation

(A and B) t-SNE visualization of LIGER analysis of scRNA-seq data (Saunders et al., 2018) and methylation data (Luo et al., 2017) from mouse frontal cortex,

colored by modality (A) and LIGER cluster assignment (B).

(C) Riverplot showing relationship between published cluster assignments of RNA and methylation data and LIGER joint clusters.

(D) Expression and methylation of two claustrum markers.

(E) t-SNE representation of the LIGER subcluster analysis of MGE interneurons.

(F) Expression and methylation of 4 marker genes for different MGE subpopulations.

(G) Boxplots of expression and methylation markers for Sst-Chodl cells (cluster MGE_12).

See also Figure S6.
mechanisms by which epigenomic information regulates

gene expression to determine cell identity. Finally, such integra-

tion may improve sensitivity and interpretability compared to

analyzing the epigenomic data in isolation, since scRNA-seq

technology can offer greater throughput and capture more infor-

mation per cell.

To investigate these possibilities, we performed an integrated

analysis of two single-cell datasets prepared from mouse frontal

cortical neurons: one of gene expression (55,803 cells) (Saunders

et al., 2018) and another of genome-wideDNAmethylation (3,378

cells) (Luo et al., 2017). We reasoned that, because non-CpG

(mCH) gene body methylation is generally anticorrelated with

gene expression in neurons (Mo et al., 2015), reversing the direc-

tion of the methylation signal would allow joint analysis. Indeed,

LIGER successfully integrated the datasets, jointly identifying

the neuronal cell types of the frontal cortex and according well

with the published analyses of each dataset (Figures 6A–6C).
1882 Cell 177, 1873–1887, June 13, 2019
Our joint analysis clarified the identities of some methylation

clusters. We found that a cluster annotated as ‘‘deep-layer clus-

ter 3’’ aligned uniquely to an RNA-seq cluster that we previously

had annotated as claustrum (Saunders et al., 2018) (Figures 6C

and 6D). In addition, a cluster annotated as ‘‘layer 6 cluster 1’’

aligned with a cluster that we identified as layer 5b. The canon-

ical marker genes have relatively low overall methylation levels,

making it challenging to assign the identity of this cell type

frommethylation alone. However, the expression of several spe-

cific layer 5b marker genes, most notably Slc17a8 (Sorensen

et al., 2015), and their corresponding low methylation pattern

in the aligned cluster mL6-1 cells, enabled us to confirm this

assignment (Figure S6A).

We performed four sub-analyses of the broad cell classes in

the frontal cortex: CGE-derived interneurons, MGE-derived in-

terneurons, superficial excitatory neurons, and deep-layer excit-

atory neurons (Figures S5C–S5E), identifying a total of 37
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clusters. Joint analysis of MGE interneurons revealed 11 popula-

tions, considerably more than was possible using the methyl-

ation data alone (Figure 6E). Examining expression and methyl-

ation of marker genes confirmed that these populations are

real and not simply forced alignment (Figure 6F). We were further

able to credibly identify 25 methylation profiles corresponding to

an interneuron population expressing Pvalb and Th (Figure S6B),

as well as 5 profiles aligning to the cluster expressing Sst and

Chodl (Figure 6G). Together, these results indicate that epige-

nomic and expression data produce meaningful joint neural

cell-type definitions, and even the finest distinctions among neu-

ral cell types defined from gene expression can be reflected by

DNA methylation differences.

Our joint cluster definitions offered an opportunity to investi-

gate the regulatory relationship between expression andmethyl-

ation at cell-type-specific resolution. We first aggregated the

gene expression and methylation values within each cluster

and then calculated correlation between the expression of

each gene and its gene body methylation levels across the set

of clusters. We confirmed the well-established overall negative

relationship between methylation and expression (Figure 7A).

We also leveraged this inverse relationship to predict spatial

methylation patterns (Figure S7A; STAR Methods). Consistent

with previous work (Luo et al., 2017; Mo et al., 2015), we found

that non-CpG methylation within the gene body, rather than

CpG methylation (mCG), was more anticorrelated with expres-

sion (Figure S7B), and anticorrelation was weaker in mCH de-

serts (Figure S7C), megabase-scale regions with very low mCH

relative to mCG (Lister et al., 2013). We also found that using

mCG resulted in poorer cluster separation compared with

mCH (Figures S7D and S7E). Longer genes showed stronger

negative correlation with gene expression than shorter genes

(Figure 7A), consistent with a known mechanism of gene repres-

sion by DNA methylation, in which the MECP2 protein binds

methylated nucleotides (Fasolino and Zhou, 2017). The degree

of MECP2 repression has been shown to be proportional to

the number of methylated nucleotides, which is strongly related

to gene length (Kinde et al., 2016). Since gene length also affects

the amount of measured methylation signal in these sparse pro-

files, we cannot completely rule out the influence of technical

factors in this observed relationship.

We observed a wide range of global methylation levels across

our set of clusters (Figure 7B), providing an opportunity to investi-

gate the basic molecular machinery involved in regulating methyl-

ation. We correlated the expression of several key genes with the

global methylation level of each cell. We found that expression of

Mecp2 correlated strongly (r = 0:46, p = 0:0039) with global
Figure 7. Investigating the Connection between DNA Methylation and

(A) Density plot of the correlation between gene body methylation and expressio

(B) Violin plots showing the wide range of global methylation levels across neura

(C–E) Scatterplots of global methylation and aggregate expression for (C) Mecp2

(F) Network of predicted interactions between transcription factors (TFs; red) and d

if the region contains a binding motif for the TF and hasmethylation anticorrelated

segregates into two largely disconnected components, which are enriched for T

(G) Genome browser view showing locations of differentially methylated regions

indicate sign and magnitude of the correlation. The 3 bottom panels show zoom

See also Figure S7.
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methylation level (Figure 7C), supporting a model in which

MECP2 represses gene expression by specifically binding to

methylated nucleotides (Kinde et al., 2016), creating a stoichio-

metric requirement for increased Mecp2 expression in cells

with higher overall methylation levels. In addition, we found that

Tet3, which converts 5mC to 5hmC, strongly anticorrelated

(r = � 0:57, p = 0:0002) with global methylation (Figure 7D).

Intriguingly, the other TET genes were not anticorrelated with

global methylation despite similar overall expression levels (Fig-

ures S7E and S7F), suggesting that TET3 could be the dominant

TET protein regulating global methylation in mature neurons.

Gadd45b, a gene with a well-established role in demethylating

neuronal DNA (Bayraktar and Kreutz, 2018), also showed a strong

negative relationship (r = � 0:30, p = 0:0685) with global

methylation. Consistent with our analysis, Gadd45b is thought

to regulate DNA demethylation by recruiting TETs (Bayraktar

and Kreutz, 2018). By contrast, none of the DNA methyltransfer-

ase enzymes (DNMTs) were strongly related to overall methylation

level (Figures S7G–S7I). These analyses show the value of an inte-

grated analysis to formulate hypotheses about the mechanisms

by which expression and methylation are regulated.

Our integrated analysis could also enable the identification of

intergenic elements regulating cell-type-specific gene expres-

sion. We defined a set of stringent criteria that combined inter-

genic methylation status, transcription factor expression, and

transcription factor sequence specificity, to identify such inter-

genic regions—and the transcription factors that may bind

them—in specific cell types (STAR Methods) (Figure 7F). These

represent strong candidates for cell-type-specific transcriptional

regulatory elements, as they harbor unmethylated transcription

factor bindingmotifs in cell types with high expression of the cor-

responding transcription factors.

Finally, our integrated definition of cell types from methylation

and expression allowed us to examine the relationship between

intergenic methylation and the expression of nearby genes. The

Arx locus harbors 8 ultraconserved elements (UCEs)—long

stretches of sequence showing perfect conservation among hu-

man, mouse, and rat (Bejerano et al., 2004; Colasante et al.,

2008). Several distal regulatory elements, including some located

within neighboring UCEs, have recently been demonstrated to

regulate Arx expression (Colasante et al., 2008; Dickel et al.,

2018). To nominate putative elements regulating Arx,

we correlated Arx expression and methylation of nearby differen-

tially methylated regions (DMRs) across our joint clusters

(Figure7G).Weobservedseveral clusters ofDMRswhosemethyl-

ation is anticorrelated with Arx expression, a pattern expected if

hypo-methylation within certain cell types makes available a
Gene Expression

n for short, medium, and long genes.

l cell types defined by the LIGER analysis in Figure 6.

, (D) Tet3, and (E) Gadd45b across our joint neural cell clusters.

ifferentially methylated regions (DMRs; blue). An edge connects a TF to a DMR

with the expression of the transcription factor (Pearson r <�0.45). The network

Fs expressed in excitatory (left) and inhibitory (right) neurons.

near the Arx locus and their correlation with the expression of Arx. The bars

ed-in views of three clusters of DMRs.



regulatory element that enhances Arx expression. One of these

anticorrelated DMRs is a validated Arx enhancer (Dickel et al.,

2018) just downstreamof the end of theArx gene (Figure 7G,mid-

dle). Another pair of DMRs strongly correlatedwithArx expression

overlap aUCE further downstreamofArx (Figure 7G, right). A third

group of DMRsupstreamof theArx site lies in a region of very high

conservation (thoughnot aUCE),with threeclear spikes inconser-

vation that aligned precisely with the locations of the DMRs

(Figure 7H, left). In summary, theseDMRs represent strong candi-

dates for putative elements regulatingArxexpression, highlighting

the value of our integrative approach for investigating gene regu-

latory mechanisms.

DISCUSSION

A credible definition of cell type requires distinguishing the

invariant properties of cell identity from the dispensable across

a myriad of settings and measurements. LIGER promises to be

a broadly useful analytical tool for such efforts because of

several key technical advantages. First, the nonnegativity

constraint of NMF yields interpretable factors, such that each

factor generally corresponds to a biologically meaningful signal.

Second, the inclusion of dataset-specific terms allows us to

identify dataset differences, rather than attempting to force

highly divergent datasets into a completely shared latent space.

Finally, LIGER’s inference of both shared and dataset-specific

factors enables a more transparent and nuanced definition of

how cells correspond across datasets. In cases where complete

correspondence is not necessarily expected—such as connect-

ing fully differentiated cells to progenitors or relating pathological

cells to healthy counterparts—a characterization of the meta-

genes that both unite and separate such populations is crucial.

We note that one limitation of existing methods for multi-omic

integration, including LIGER, is their inability to incorporate

different types of features, such as gene expression and inter-

genic methylation, in the definition of cell types. Future studies

may investigate how best to incorporate such information.

Another integration algorithm, described in this issue by Stuart

et al., (2019), uses canonical correlation analysis (CCA) to identify

a completely shared subspace of maximum correlation and then

uses these shared components to identify anchor points across

heterogeneous datasets. CCA solves a convex optimization

problem and thus guarantees a deterministic, globally optimal

solution. In contrast, LIGER uses integrative nonnegative matrix

factorization, which solves a non-convex optimization problem

and thus produces a different factorization depending on the

initialization used. LIGER infers interpretable shared and data-

set-specific factors, which often correspond to important biolog-

ical signals, including signals that are not orthogonal to cell type,

or technical signals, enabling their removal from downstream

analysis.

We envision LIGER serving several important needs in neuro-

biology, beyond its capacity to better define cell types. First, a

key opportunity in single-cell analysis is the identification of

cell-type-specific gene expression patterns associated with dis-

ease risk, onset, and progression in human tissue samples. Early

efforts at such investigation have yielded some exciting results

(Keren-Shaul et al., 2017), but increased discovery is likely
possible with robust integrative analysis of many tissue donors.

Such analyses may also help localize genetic risk loci for neuro-

psychiatric diseases to specific human cell types. Second, the

integration of data from epigenomic and transcriptomic datasets

provides a path toward nominating functional genomic elements

important in cell-type-specific gene regulation. Such elements

are compelling candidates for cell-type-specific enhancers to

drive expression of genetic tools in specific subsets of brain cells

andmay also help narrow the search for causative alleles at spe-

cific genetic risk loci. Finally, as in vitromodels of complex brain

tissues become more sophisticated (Birey et al., 2017; Quadrato

et al., 2017), single-cell gene expression measurements,

together with an integrative analysis like LIGER, will help provide

systematic, information-rich comparisons of such models with

their in vivo counterparts. To facilitate adoption of the tool in

the community, we have developed an R package that supports

analysis of large-scale datasets and includes ancillary functions

for tuning algorithmic parameters, visualizing results, and quan-

tifying integrative performance. We hope its widespread deploy-

ment opens many exciting new avenues in single-cell biology.
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