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Measurement of the location of molecules in tissues is 
essential for understanding tissue formation and function. 
Previously, we developed Slide-seq, a technology that enables 
transcriptome-wide detection of RNAs with a spatial resolu-
tion of 10 μm. Here we report Slide-seqV2, which combines 
improvements in library generation, bead synthesis and array 
indexing to reach an RNA capture efficiency ~50% that of 
single-cell RNA-seq data (~10-fold greater than Slide-seq), 
approaching the detection efficiency of droplet-based 
single-cell RNA-seq techniques. First, we leverage the detec-
tion efficiency of Slide-seqV2 to identify dendritically local-
ized mRNAs in neurons of the mouse hippocampus. Second, 
we integrate the spatial information of Slide-seqV2 data with 
single-cell trajectory analysis tools to characterize the spa-
tiotemporal development of the mouse neocortex, identifying 
underlying genetic programs that were poorly sampled with 
Slide-seq. The combination of near-cellular resolution and 
high transcript detection efficiency makes Slide-seqV2 useful 
across many experimental contexts.

The ab initio identification of spatially defined gene expression 
patterns can provide insights into the development and mainte-
nance of complex tissue architectures and the molecular character-
ization of pathological states. We recently developed Slide-seq1, a 
spatial genomics technology that quantifies expression across the 
genome with 10-µm spatial resolution. While recent developments 
in imaging-based transcriptomics have enabled the identification 
of tens to hundreds of preselected genes in fixed specimens2–5, 
array-based approaches1,6,7 such as Slide-seq critically decouple 
the imaging from molecular sampling while simultaneously allow-
ing for transcriptome-wide identification of molecular patterns 
in diverse tissue sections1,6,7. In Slide-seq, densely barcoded bead 
arrays, termed ‘pucks’, are fabricated by split-pool phosphoramidite 
synthesis and indexed up front using a sequencing-by-ligation strat-
egy. Once the arrays are indexed, Slide-seq assays are performed 
with equipment found in a standard molecular biology laboratory, 
enabling the facile reconstruction of three-dimensional (3D) tissue 
volumes that are tens or even hundreds of cubic millimeters in size.

However, Slide-seq’s low transcript detection sensitivity limited 
the range of biological problems to which the technology could be 
applied. Through improvements to the barcoded bead synthesis, the 
array sequencing pipeline and the enzymatic processing of cDNA, 
we report here a version of Slide-seq with an order of magnitude 
higher sensitivity. With our new protocol, termed Slide-seqV2, 
we demonstrate a range of new analytical possibilities by  

leveraging its improved capture efficiency, including the identifica-
tion of process-localized genes in neurons and the analysis of devel-
opmental trajectories in situ.

We increased the yield of Slide-seq capture by improving the 
array generation pipeline and the library preparation strategy  
(Fig. 1a). First, we developed a new strategy to spatially index 
barcoded bead arrays using a monobase-encoding scheme with 
sequencing by ligation using sequential interrogation by offset prim-
ers8,9 (Supplementary Fig. 1a–c and Methods). We were motivated 
to develop the monobase-encoding scheme for two reasons. First, 
SOLiD dibase encoding utilizes proprietary cleavage chemistry 
that is not commercially available. Second, computational match-
ing between dibase-sequenced barcodes and Illumina sequencing 
requires conversion between colorspace and basespace and is not 
error robust. Our open-source monobase-sequencing strategy, 
which uses only readily available reagents, performed equivalently 
to SOLiD in array indexing (Supplementary Fig. 1d,e). In addition, 
we optimized the conditions for split-pool synthesis of the 10-μm 
polystyrene barcoded beads (Methods), which improved the clonal-
ity of our barcodes (Supplementary Fig. 2). Together, these strategies 
enabled more efficient recovery of gene expression on Slide-seqV2 
arrays per Illumina read.

Next, we optimized the enzymatic library preparation steps of 
Slide-seqV2. We hypothesized that, due to a tissue’s inhibitory pres-
ence during reverse transcription, the template-switching reaction 
that adds a 3′ priming site for whole-transcriptome amplification 
was inefficient. We therefore added another second-strand syn-
thesis step10 after reverse transcription to increase the number of 
cDNAs that could be amplified by PCR. We performed Slide-seqV2 
on embryonic day (E) 12.5 mouse embryos and obtained ~9.3-fold 
more transcripts (unique molecular identifiers, UMIs) per bead 
than with the original Slide-seq protocol (Fig. 1b; median UMIs, 
Slide-seqV2 = 550 and Slide-seq = 59). Similarly, in the adult 
mouse hippocampus, we observed an 8.9-fold increase in the 
number of UMIs per bead, with the majority of the improvement 
(4.6-fold; Supplementary Table 1) attributable to the additional 
second-strand synthesis step and the remaining improvement 
largely due to improvements in bead barcode synthesis. In the 
mouse hippocampus, the capture efficiency of Slide-seqV2 was 
higher than that of a recently released commercial spatial tran-
scriptomics (ST) technology (mean UMIs, Slide-seqV2 = 45,772 
and 10x Genomics Visium = 27,952 for equal feature size (110 μm 
diameter binned area; Supplementary Fig. 3a–d) while maintaining 
30-fold-improved spatial resolution per feature (30.25-fold by area 
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per feature; 10-μm feature size for Slide-seqV2 compared to 55-μm 
feature size for 10x Genomics Visium data). We also compared the 
sensitivity of Slide-seqV2 to that of HDST, another ST technology 
with high spatial resolution7. We found that, in the mouse olfac-
tory bulb, Slide-seqV2 recovered many more transcripts per 10-μm 
feature than HDST (44.9-fold mean difference; 494 UMIs for 
Slide-seqV2 versus 11.5 UMIs for HDST; Supplementary Fig. 3e,f).

Next, we sought to quantify the absolute sensitivity of Slide-seqV2 
relative to other molecular technologies that measure RNA content 
in cells and tissues. We compared counts of CA1 marker genes 
(Atp2b1, Ocaid2 and Slc17a7) in an equal number of cells that 
were measured by the following: (1) Slide-seqV2; (2) Drop-seq, a 
high-throughput single-cell RNA (scRNA)-seq method11,12; and  
(3) single-molecule fluorescence in  situ hybridization (smFISH; 
refs. 5,13,14; Methods). We found that Slide-seqV2 detected similar 
patterns to smFISH (Fig. 1c and Supplementary Figs. 4 and 5a) 
and similar numbers of UMIs when compared to Drop-seq for the 
three genes measured (equivalent area in Slide-seqV2 to number 
of cells taken from Drop-seq; mean ± s.d., scRNA-seq = 33.5 ± 1.4, 
2.1 ± 1.5 and 1.2 ± 1.5; Slide-seqV2 = 15.7 ± 1.5, 2.3 ± 2.4 and 
1.9 ± 2.6; Fig. 1d; n = 6; Supplementary Table 2). To more thor-
oughly characterize the sensitivity of Slide-seqV2, we compared 
the total UMI counts per gene for all genes detected in CA1 excit-
atory neurons in Drop-seq11 to the UMIs detected for an equivalent 
number of CA1 cells by area in Slide-seqV2. We found that, across 
the genome, Slide-seqV2 detected approximately 44% ± 26% of the 
counts of Drop-seq (median ± median absolute deviation (MAD); 
Supplementary Fig. 5b), demonstrating that the Slide-seqV2 cap-
ture efficiency approaches that of modern single-cell technologies. 
Lastly, we found Slide-seqV2 to be highly reproducible between rep-
licates (⍴ = 0.98; Supplementary Fig. 5c).

We next applied Slide-seqV2 to gain insight into biological 
problems where higher capture sensitivity is important. Neurons 
actively transport specific mRNAs to dendrites and postsynaptic 
densities, where they play critical roles in synaptic development 
and plasticity15–17. Previous studies have explored dendritic enrich-
ment through physical microdissection or cell culture, but none has 
systematically identified the distribution of dendritically localized 
transcripts in situ. Dendritic mRNAs constitute only a tiny fraction 
of neuronal transcripts18, necessitating higher-sensitivity methods 
for their detection. To identify dendritically localized mRNAs from 
our mouse hippocampal Slide-seqV2 dataset, we took advantage 
of the stereotyped architecture of the CA1 neuropil to reduce the 
spatial localization of transcripts to a one-dimensional (1D) profile 
perpendicular to the CA1 soma layer (from the stratum oriens to 
the stratum pyramidale and across the stratum radiatum; Fig. 2a,b). 
For each gene detected in Slide-seqV2 (n = 4 sections), we calcu-
lated the spatial expression as a function of distance from the soma 
(representative spatial expression profiles shown in Fig. 2b, bottom).

To select for dendritically localized mRNA, we performed differ-
ential expression analysis, comparing the proximal neuropil (stra-
tum radiatum) to the soma (stratum pyramidale). The CA1 neuropil 
contains glial cell types (that is, microglia and astrocytes) that also 
contribute RNA and interfere with analysis; we therefore included 
only genes expressed in CA1 pyramidal cells (>0.5 transcripts per 
million in CA1 pyramidal neurons) and excluded those that are 
markers of non-neuronal cell types (Methods and Supplementary 
Table 3) based on existing scRNA-seq data of the hippocampus11. 
After filtering, differential expression analysis between the proximal 
neuropil and the soma revealed 213 significant genes with greater 
than twofold dendritic enrichment (q < 0.05, unpaired t-test, n = 4 
sections; Fig. 2c and Supplementary Table 3). These genes over-
lapped significantly (P < 10−16, hypergeometric test; Supplementary 
Fig. 6a) with lists of dendritically enriched RNAs from two previous 
studies19,20, suggesting that Slide-seqV2 can discover dendritically 
enriched genes.

Next, we asked whether functionally related genes showed simi-
larities in their dendritic enrichment. First, we grouped dendriti-
cally enriched genes according to their 1D spatial expression profile 
(Fig. 2d). Using unsupervised clustering, we identified four spatial 
expression clusters of dendritically localized genes in CA1 neuro-
pil, with clusters having different degrees of dendritic enrichment  
(Fig. 2e and Supplementary Table 3). To identify whether this 
observed spatial diversity in localization was related to protein 
function, we used Gene Ontology (GO) to determine the cellular 
components of each spatial cluster (Supplementary Fig. 6b and 
Methods). We found that each cluster was enriched for ontologi-
cally distinct groups of genes. Specifically, the first two clusters were 
enriched for components of the cellular respiration machinery and 
ubiquitin ligases, while clusters 3 and 4 were enriched for ribosomal 
subunits. Slide-seqV2’s genome-wide capture allowed us to visual-
ize the heterogeneity in dendritic trafficking across two synaptic 
and two cytoskeletal genes chosen from each cluster (Fig. 2f; spa-
tial reconstructions of all 213 genes are shown in Supplementary 
Dataset 1). Taken together, these data demonstrate Slide-seqV2’s 
ability to characterize process-localized mRNAs, which appear to 
display significant heterogeneity among the various trafficked syn-
aptic mRNA components.

The specificity of dendritically enriched genes for specific cell 
types (for example, CA1 versus other pyramidal cells) has not been 
widely examined, in part because traditional approaches have mea-
sured dendritic trafficking in  vitro or only from a single in  vivo 
cell type. To explore this question, we integrated Slide-seqV2 data, 
which span multiple hippocampal fields, with scRNA-seq data from 
the same tissue. From an existing hippocampal single-cell dataset11, 
we computed differential expression between CA1 and other hip-
pocampal pyramidal cells for all genes (Methods). The dendritically 
localized set identified by Slide-seqV2 showed a significant deple-
tion of differentially expressed genes relative to somatically enriched 
genes (P < 0.05, Wilcoxon rank-sum test; Fig. 2g). These results sug-
gest that, in the hippocampus, dendritically localized transcripts are 
more likely to be broadly expressed genes rather than markers of 
specialized neuronal cell types.

Dendritically enriched genes are expressed and trafficked 
from the soma compartment; we therefore asked whether 
cell-type-specific expression changes are reflected in the dendritic 
compartment. When dendritically enriched genes were examined 
in Slide-seqV2 in both CA3 and CA1 neurons, the variance in fold 
change in the soma for dendritic genes was much larger than the 
variance in fold change observed for dendrites (Fig. 2h; two-sample 
F-test, P = 3 × 10−9). Furthermore, soma fold change explained only 
13% of the variance in dendritic expression between CA3 and CA1 
dendrites. These results indicate that expression in dendrites is rela-
tively buffered from the soma, suggesting the existence of distinct 
regulatory mechanisms in these two neuronal compartments.

During development, dynamic changes in gene expression 
across time and space help give rise to complex tissue architectures 
and terminally differentiated cell types. An array of computational 
strategies have been developed to identify and explore developmen-
tal trajectories from scRNA-seq data21–24 based on similarities in 
gene expression between individual profiles. More recently, an addi-
tional approach called RNA velocity was developed that dynami-
cally models expression trajectories by the relative quantities of 
spliced and unspliced transcripts for each gene25. Inspired by this 
work, we reasoned that the combination of Slide-seqV2’s enhanced 
capture efficiency and its near-single-cell resolution might allow us 
to exploit these powerful algorithms directly on our spatial data to 
learn how developmental processes proceed across a tissue section.

In the embryonic mouse neocortex, neuronal development 
progresses along a radial axis that begins in the ventricular zone 
(VZ) and moves through the subventricular zone (SVZ), interme-
diate zone (IZ) and finally the cortical plate (CP), where neurons  
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integrate into cortical layers in a birthdate-dependent manner26. We 
wondered whether Slide-seqV2 data could be used to successfully 
recover this highly spatially organized developmental trajectory27. 
We first applied unsupervised clustering28 to Slide-seqV2 data from 
an E15 developing mouse brain to characterize gene expression gra-
dients in the neocortex. We annotated clusters corresponding to cell 
types in different developing brain regions, including the cortex and 
striatum (Fig. 3a and Supplementary Fig. 7a,b). Segregating just the 
radially developing cortex (Fig. 3a, black box), we reclustered the 
beads to reveal populations representing the VZ, SVZ, IZ, CP, early 
cortical layers (L5/6) and Cajal Retzius (CR) cells (Fig. 3a).

To determine whether Slide-seqV2 data can identify develop-
mental trajectories, we first applied scVelo29, a recently developed 

trajectory inference method that leverages splicing information25, to 
order our beads along predicted latent time (LT). Projection of each 
bead’s LT value onto spatial coordinates successfully recapitulated 
the established radial developmental axis of the neocortex (Fig. 3b).  
A very similar trajectory was recovered using the pseudotime order-
ing generated by Monocle3 (refs. 22,30; Supplementary Fig. 7c).

During the course of a developmental process, each stage of 
maturation can proceed at a different rate. We wondered whether 
Slide-seqV2’s spatial information could be exploited to identify the 
relative rates of differentiation across the radial axis of neocortical 
development. To accomplish this, we took the spatial derivative of 
the scVelo-generated LT (Methods), recovering regions where LT 
changed most dramatically (Fig. 3b, magnitude of arrows representing  
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the magnitude of the derivative). We found that the spatial rate 
of change was most pronounced at the earlier stages of the trajec-
tory, decreasing as cells progressed from the VZ to the SVZ/IZ and 
largely terminating in the CP.

Because each bead’s physical position is strongly predictive of its 
LT value, we reasoned that combining spatial and LT information 
could give us considerably greater statistical power to identify gene 
expression changes across this developmental process. The scVelo 
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method was able to identify 179 genes with significant loading on 
LT, while the Monocle3 approach identified 377 genes. We previ-
ously demonstrated that we could leverage the spatial dimension 
of Slide-seq to systematically discover non-random spatial gene 
expression patterns1. Leveraging this, we identified 1,349 spatially 
varying genes in the developing neocortex (P < 0.005; Methods and 
Supplementary Table 4; spatial expression plots of all genes are in 
Supplementary Dataset 2). Among these were genes that are known 
to be involved in cortical development and are shared among 
Slide-seq and the trajectory inference methods, including Sema5b 
and Nrp1, which encode proteins involved in axonal guidance31,32 
(Fig. 3c). We noted that these genes correlated strongly with the spa-
tial LT axis. Thus, to systematically find genes that varied along this 
axis, we correlated the expression of these 1,349 non-random genes 
with a spatial LT axis that was created by fitting a surface to the LT 
values in physical space (Methods). Of the 1,349 spatially variable 
genes, 1,043 correlated significantly with LT (pFDR < 0.005), while 
very few of the non-spatially variable genes showed a significant 
LT relationship (Fig. 3d). In addition, the 1,043 genes were highly 
overlapping with the genes identified by the trajectory inference 
methods across the range of expression levels (Fig. 3e). Among 
these genes were 76.5% of the scVelo-identified genes (137/179; 
Supplementary Fig. 8 and Supplementary Table 5) and 75.6% of 
the Monocle3-defined genes (285/377; Supplementary Fig. 8 and 
Supplementary Table 5). These results gave us confidence that the 
1,043 genes found using our spatial LT approach were truly associ-
ated with neocortical development.

We applied this spatial LT approach to the embryonic eye at 
E12.5, a critical period of cell differentiation and migration33. We 
recovered the radial axis of ocular lens development, with spatial 
trajectories from the lens placode inward to the developing lens 
(Supplementary Fig. 7d,e). Similarly to the cortex, we found that 
spatial LT provides a highly sensitive method to detect developmen-
tal genes along this trajectory. With this approach, we identified 
>1,000 genes as uniquely spatially variable (Supplementary Figs. 7f 
and 8). Many genes recovered are important in ocular development, 
including genes essential to the development of the lens and associ-
ated structures such as the lens placode (Pax6)34 and the primordial 
optic cup (Vax2)35. This list also included many from the crystal-
lin (Crybb3)36 and aldehyde dehydrogenase (Aldh1a1)37,38 gene 
families whose products form the fiber network of the lens36 and 
pattern signaling networks across the optic area37,38. Additionally, 
we found genes (Aldh1a3 and Col9a1) identified as genetic driv-
ers of ocular development disorders39,40 that were spatially enriched 
and whose protein products differentially pattern the lens placode, 
giving rise to distinct structures within the eye33 (Supplementary 
Fig. 7g). These results suggest that spatial LT, in combination with 
Slide-seqV2, can add spatial context to understanding the molecu-
lar signatures of genetic drivers of disease.

Inspired by the spatial enrichment of molecular signatures of 
genetic diseases in the developing eye, we next focused on neurode-
velopmental disorders (DD), a class of diseases frequently caused by 
pathogenic mutations in protein-coding genes41 that often disrupt 
the normal process of neocortical development. We asked how a set 
of 299 DD-associated genes, recently discovered by exome sequenc-
ing of DD parent–offspring trios42, distributed on our spatial LT tra-
jectory. A total of 74 of the 299 DD-associated genes were found in 
the spatial LT gene set (1.87-fold enrichment, P = 3.2 × 10−8). These 
genes were expressed later in average LT compared with all spatial 
LT genes (Fig. 3f, left). Interestingly, the average expression of the 
74 DD-associated spatial LT genes was much higher than that of all 
spatial LT genes (Fig. 3f, right). These 74 genes could be clustered 
into five groups based on their spatial expression patterns (Fig. 3g 
and Methods). The individual clusters were enriched for distinct 
GO functional terms, suggesting that these genes participate in dis-
tinct developmental processes and pathways (Fig. 3h), ranging from 

chromatin modification to the establishment of neuronal states. 
Once additional phenotypic data become available about the rela-
tive clinical differences among these DD-associated genetic disor-
ders, they will help reveal how such phenotypes differentially load 
onto the spatial LT axis.

Here we described Slide-seqV2, a high-resolution spatial genom-
ics technology with nearly an order of magnitude higher sensitivity 
than the original Slide-seq protocol. In particular, we demonstrated 
how the higher capture efficiency of Slide-seqV2 substantially 
expands the scope of possible analyses, including the discovery 
of genes with distinct patterns of subcellular localization and the 
tracing of developmental programs involved in fate specification 
through space.

To facilitate adoption of the technology, we have generated a 
streamlined pipeline, which is available on our GitHub repository 
(https://github.com/MacoskoLab/slideseq-tools), for image pro-
cessing and merging of short-read sequencing and imaging data 
(Supplementary Fig. 9 and Methods). With minimal user interven-
tion required, this pipeline provides barcode locations and gene 
expression matrices, as well as statistics related to the alignment of 
imaging and short-read data. The combination of efficient molec-
ular biology workflows, open-source sequencing chemistry for 
array indexing and easy-to-use software for merging imaging and 
sequencing data should support the wide application of Slide-seqV2. 
We anticipate that the technical and computational improvements 
here will substantially accelerate the adoption of Slide-seqV2 across 
the academic community.
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Methods
Barcoded beads. Bead barcodes were synthesized either by the ChemGenes 
Corporation or in house on an Akta Oligopilot 10 on one of two polystyrene 
supports, Agilent PLRP-S-1000A 10-μm particles or 10-μm custom polystyrene 
from AMBiotech. Oligonucleotide synthesis was performed as described 
below. Beads were used with one of the two following sequences: ChemGenes 
Corporation beads (5′-TTTTTTTTCTACACGACGCTCTTCCGATCTJJJJJ 
JJJTCTTCAGCGTTCCCGAGAJJJJJJJNNNNNNNNT30-3′) and custom synthesis  
beads (5′-TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACG 
CTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJJJJJJJTCNNNNN 
NNNT25-3′ (vs1) and 5′-TTT_PC_GCCGGTAATACGACTCACTATAGGGCT 
ACACGACGCTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJJJJJJN 
NNNNNNVVT30-3′ (vs2)); PC, a photocleavable linker; J, bases generated by 
split-pool barcoding, such that every oligonucleotide on a given bead has the same 
J bases; N, bases generated by standard base mixing of a 1:1:1:1 ratio of A, C, T 
and G, such that every oligonucleotide on a given bead has different N bases; TX, a 
sequence of X thymidines; V, an A, C or G but not T.

Bead synthesis. PLRP-S resin (~10-μm mean particle diameter; Agilent) was 
functionalized with a non-cleavable linker by ChemGenes. The functionalized 
beads were then used as a solid support for reverse-direction phosphoramidite 
synthesis (5′ to 3′) on an Akta OligoPilot 10 using a standard solid-phase DNA 
synthesis protocol. 5′-CE (b-cyanoethyl) phosphoramidites were purchased 
from Glen Research and were dissolved in anhydrous acetonitrile to obtain a 
concentration of 0.1 M. Successive phosphoramidites were coupled for 5 min using 
5-benzylmercaptotetrazole (0.30 M in acetonitrile) as an activator. Oxidation of the 
phosphite backbone to a phosphate backbone was achieved using iodine. Failure 
sequences were capped using acetic anhydride. Dichloroacetic acid was used as 
a detritylation reagent. For split-pool synthesis cycles, beads were suspended in 
acetonitrile and divided into four equal portions. These bead aliquots were then 
placed in four separate synthesis columns and reacted with dG, dC, dT or dA 
phosphoramidites. After each cycle, beads were pooled, suspended in acetonitrile 
and aliquotted into four equal portions. The split-pool procedure was repeated 15 
times in total (two blocks of eight and seven cycles) to obtain 415 (~109) unique 
barcode sequences. After synthesis completion, the protecting groups from the 
nucleobases and phosphate backbone were removed by treating beads with 30% 
ammonium hydroxide containing 10% diethylamine for 40 h at room temperature. 
The beads were centrifuged, and the supernatant was discarded. Beads were then 
washed three times with 1% acetone in acetonitrile, three times with water and 
three times with a buffer consisting of 10 mM Tris and 1 mM EDTA pH 8.

Puck preparation. Puck preparation was performed as described previously1, with 
the following modification. Beads were pelleted and resuspended in water with 
10% DMSO at a concentration between 20,000 and 50,000 beads per μl. Then, 
10 μl of the resulting solution was pipetted into each position on the gasket. The 
coverslip gasket filled with beads was centrifuged at 850g for at least 30 min at 40 °C 
until the surface was dry.

Puck sequencing. Puck sequencing was performed in a Bioptechs FCS2 flow 
cell using an RP-1 peristaltic pump (Rainin) and a modular valve positioner 
(Hamilton MVP). Flow rates between 1 ml min–1 and 3 ml min–1 were used during 
sequencing. Imaging was performed using a Nikon Eclipse Ti microscope with 
a Yokogawa CSU-W1 confocal scanner unit and an Andor Zyla 4.2 Plus camera. 
Images were acquired using a Nikon Plan Apo ×10, 0.45-NA objective. After each 
ligation, images were acquired in the following channels: 488-nm excitation with a 
525/36-nm emission filter (MVI, 77074803), 561-nm excitation with a 582/15-nm 
emission filter (MVI, FF01-582/15-25), 561-nm excitation with a 624/40-nm 
emission filter (MVI, FF01-624/40-25) and 647-nm excitation with a 705/720-nm 
emission filter (MVI, 77074329). The final stitched images varied in size depending 
on the size of the Slide-seq array. For the arrays presented in this work the final 
stitched images were 6,030 pixels by 6,030 pixels.

Pucks were sequenced using a sequencing-by-ligation approach with a SOLiD 
dibase-encoding strategy previously described1,43 and with a monobase-encoding 
strategy developed for this work. Fluorescent oligonucleotides were synthesized 
on an Akta OligoPilot 10 or were obtained from IDT (Supplementary Table 6). A 
total of eight fluorescent oligonucleotides were used and are referred to as 5(base) 
or 3(base) to indicate the corresponding mode of ligation and the identity of the 
interrogated base. Each sequencing oligonucleotide interrogates the +2 base from 
the ligation junction with each base identity corresponding to a fluorescent channel 
(A, FAM; C, Cy3; T, Cy5; G, Texas Red or AqP593).

The monobase-sequencing strategy interrogated 14 split-pool bases using 
three modes of sequencing by ligation. This strategy is motivated by the need to 
eliminate the use of proprietary cleavage reagents from SOLiD and to allow for 
sequencing using commercially available oligonucleotides. The overall sequencing 
strategy (Supplementary Fig. 1a) consisted of hybridization of a sequencing primer 
to interrogate the +2 base from the ligation junction followed by a ligation to 
interrogate a split-pool base followed by dehybridization of the sequencing primer 
and subsequently ligated sequencing oligonucleotide using formamide before 
moving onto the next ligation. The three ligation modes are 5′ ligation (ligation at 

the 5′ end of a hybridized sequencing primer), 3′ ligation (ligation at the 3′ end of a 
hybridized sequencing primer) and SEDAL (sequencing primer hybridization and 
ligation with a degenerate primer in a single solution).

On each bead sequence, there were two primer binding sites, a TruSeq primer 
site (T) and a Universal Primer site (UP; Supplementary Fig. 1b). All primer 
sequences are listed in Supplementary Table 6. Sequencing started with 5′ ligation 
on the TruSeq primer. First, the T−1 primer (primer T shortened by one base on 
the 5′ end) was hybridized, and a ligation was performed to interrogate the first J. 
After stripping with formamide, the T primer was hybridized (primer T) and the 
second J was interrogated. After stripping with formamide, the T+1 primer was 
hybridized (the + primers represent the T primer with an added N (representing 
a random nucleotide generated by basemixing of all four bases at an equal 
concentration) on the 5′ end). For the rest of the 5′ ligations, the same steps were 
repeated with T+2, UP−1, UP, UP+1 and UP+2, where UP primers followed the 
same conventions as TruSeq primers.

Next, sequencing proceeded with 3′ ligations using the 3UP primer series and 
3(base) sequencing oligonucleotides. These ligations were performed for 3UP+1, 
3UP and 3UP–1 (where 3UP+1 is UP plus an N base on the 3′ end, 3UP is the UP 
primer and 3UP–1 is the UP primer shortened by one base on the 3′ end).

Lastly, sequencing was performed with SEDAL, which utilizes degenerate 
primers in solution with the 5′ sequencing oligonucleotides. As the number of 
N bases added to the end of the hybridized primer increases, the sequencing 
efficiency decreases. Empirically, we found that we could not use prehybridized 
+ primers beyond two bases (T+2 and UP+2). To overcome this, we included 
shortened primers with additional N bases (+3 and +4) in solution with the 
fluorescent sequencing oligonucleotides. We performed three rounds of SEDAL 
with three separate primers (T+3, UP+3 and UP+4).

This sequencing approach is outlined schematically in Supplementary Fig. 1b. 
For 5′ and 3′ ligation modes, 5 μM of primer was injected into the flow cell in 4× 
SASC for 40 min. Subsequently, the flow cell was washed in 5 ml of wash buffer 
(50 mM Tris-acetate and 0.05% Triton X-100). Ligation mix (5′ ligation mix: 1× T4 
DNA ligase buffer (NEB), 6 U μl–1 T4 DNA ligase (NEB), 20 μM each of 5T, 5A, 5G 
and 5C oligonucleotides; 3′ ligation mix: 1× T4 DNA ligase buffer (NEB), 6 U μl–1 
T4 DNA ligase (NEB), 20 μM each of 3T, 3A, 3G and 3C oligonucleotides; SEDAL 
ligation mix: 1× T4 DNA ligase buffer (NEB), 6 U μl–1 T4 DNA ligase (NEB), 
5 μM primer, 5 μM each of 5T, 5A, 5G and 5C oligonucleotides) was then added 
to the chamber and allowed to sit for 40 min, at which point the flow was reversed 
to return the ligation mix to its original reservoir. Ligation mix was reused for a 
complete sequencing run before being replenished. After a subsequent wash, pucks 
were imaged as described above and then stripped using 10 ml of 80% formamide 
for 20 min. For SEDAL ligations, 5 μM of primer was added to the ligation mix, and 
this mixture was introduced to the chamber and allowed to sit for 2 h.

Bead barcodes consisted of 15 ‘J’ bases, of which 14 were used. To sequence 
these barcodes, we performed three rounds of SEDAL, eight rounds of 5′ ligation 
and three rounds of 3′ ligation. The bases corresponding to each ligation mode 
are outlined in Supplementary Fig. 1a,b. The 14 primers necessary for this process 
were obtained from IDT (Supplementary Table 6).

Microscopy. Imaging was performed using a Nikon Eclipse Ti microscope with 
a Yokogawa CSU-W1 confocal scanner unit and an Andor Zyla 4.2 Plus camera. 
Images were acquired using a Nikon Plan Apo ×10, 0.45-NA objective. After each 
ligation, as mentioned in the Puck sequencing section, we acquired four images, 
one using a 488-nm laser and a 525/36-nm emission filter (MVI, 77074803), one 
using a 561-nm laser and a 582/15-nm emission filter (MVI, FF01-582/15-25), 
one using a 561-nm laser and a 624/40-nm emission filter (MVI, FF01-624/40-25) 
and one using a 647-nm laser and a 705/72-nm emission filter (MVI, 77074329). 
The final stitched images were 6,030 pixels by 6,030 pixels. All images acquired for 
hybridization chain reaction (HCR) experiments were imaged using a Nikon Plan 
Apo ×40 1.15-NA water immersion objective.

Image processing and basecalling. Image processing was performed as  
previously described, and we have made an easy-to-use image processing and 
basecalling MATLAB package that has been deposited at https://github.com/
MacoskoLab/PuckCaller/. Input images are four-channel sequencing images 
for each puck for each time point of sequencing. For each bead, the sequence 
string for the bead barcode is output. For monobase imaging, the images were 
directly convertible to basespace rather than colorspace; thus, we omitted the step 
of conversion of Illumina reads to colorspace before comparison to the in situ 
indexing data as previously described. Metadata on all pucks used are shown in  
Supplementary Table 7.

Slide-seq tools. We developed the Slide-seq tools pipeline for processing Slide-seq 
data. The scripts, documentation and example data are available at https://github.
com/MacoskoLab/slideseq-tools. The Slide-seq tools included several analysis 
steps, and the workflow is illustrated in Supplementary Fig. 9.

	1.	 Extract Illumina barcodes. This step runs run_barcodes2sam.py and calls the 
ExtractIlluminaBarcodes function in Picard tools (https://github.com/broad-
institute/picard) to extract the barcode for each read in an Illumina lane from 
Illumina binary basecall (BCL) files.
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	2.	 Convert Illumina basecalls to bam. This step runs run_processbarcodes.
py and calls the IlluminaBasecallsToSam function in Picard tools to collect, 
demultiplex and sort reads across all the tiles of a lane by barcode to produce 
an unmapped bam file.

	3.	 Pre-alignment. This step runs run_alignment.py, calls the functions of 
TagBamWithReadSequenceExtended, FilterBam, TrimStartingSequence 
and PolyATrimmer in the Drop-seq tools (https://github.com/broadinsti-
tute/Drop-seq) to tag unmapped bam files with a bead barcode (XC) and a 
molecular barcode (that is, UMI marked by tag XM), filters low-quality reads, 
trims reads with a starting sequence and poly(A) tail and calls the SamTo-
Fastq function in Picard tools to convert bam files to fastq files.

	4.	 Align reads to the reference genome. This step runs run_alignment.py and 
calls the STAR aligner44 to align reads in fastq to a reference genome.

	5.	 Post-alignment. This step runs run_alignment.py to call SortSam and 
MergeBamAlignment in Picard tools to sort aligned bam files and to merge 
unmapped bam and aligned bam files and also calls the functions TagRead-
WithInterval and TagReadWithGeneFunction in Drop-seq tools to tag reads 
with interval and gene identity.

	6.	 Generate alignment reports and plots. This step runs generate_plots.py and 
calls the CollectRnaSeqMetrics function in Picard tools and the functions 
BamTagHistogram, BaseDistributionAtReadPosition and GatherReadQuali-
tyMetrics in Drop-seq tools to generate a few reports based on the aligned 
bam file, such as read quality and mapping rate, base distribution across the 
reads and data on the composition and quality of the bead and molecular 
barcodes.

	7.	 Select top cells by the number of transcripts. This step runs run_analysis_
spec.py and calls the SelectCellsByNumTranscripts function in the Drop-seq 
tools to select top cells by the number of transcripts that the user specifies 
when submitting a request.

	8.	 Match Illumina barcodes to bead barcodes. This step runs cmatcher.cpp to 
calculate Hamming distances between each Illumina barcode and all of the 
bead barcodes from in situ sequencing. The list of uniquely matched Illumina 
barcodes with a Hamming distance ≤1 along with the matched bead barcodes 
is output.

	9.	 Generate reports and plots on matched barcodes. This step runs gener-
ate_plots_cmatcher.py and calls the CollectRnaSeqMetrics function in Picard 
tools and the functions DigitalExpression, BamTagHistogram, BaseDistri-
butionAtReadPosition, GatherReadQualityMetrics and SingleCellRnaSeq-
MetricsCollector in Drop-seq tools to generate the digital gene expression 
matrix. Quality metrics, including a histogram of Hamming distance between 
Illumina and bead barcode matches, a color-scaled number of UMIs per bead 
and other reports, are also generated.

Supplementary Table 8 shows the running time of the Slide-seq tools on 
four libraries: 190926_01, 190926_02, 190926_03 and 190926_06. The Illumina 
platform was NovaSeq, and there were two lanes in the experiment. Reads were 
aligned to the GRCm38.81 genome sequence. The read base quality for alignment 
and the minimum number of transcripts per cell for selecting top cells were each 
set to ten. Reads aligned to both exons and introns were included in the gene 
expression analysis. To speed up the process, Slide-seq tools split each lane of 
NovaSeq data into ten slices, ran the alignment steps on the slices in parallel and 
combined the alignment outputs.

Slide-seqV2 library preparation. RNA hybridization. Pucks in 1.5-ml tubes were 
immersed in 200 μl of hybridization buffer (6× SSC with 2 U μl–1 Lucigen NxGen 
RNase inhibitor) for 30 min at room temperature to allow for binding of the RNA 
to the oligonucleotides on the beads.

First-strand synthesis. First-strand synthesis was performed by incubating the pucks 
in RT solution (115 μl water, 40 μl Maxima 5× RT buffer (Thermo Fisher, EP0751), 
20 μl of 10 mM dNTPs (NEB, N0477L), 5 μl RNase inhibitor (Lucigen, 30281), 10 μl 
of 50 μM template switch oligonucleotide (Qiagen, 339414YCO0076714) and 10 μl 
Maxima H Minus reverse transcriptase (Thermo Fisher, EP0751)) for 1.5 h at 52 °C.

Tissue digestion. Two hundred microliters of 2× tissue digestion buffer (200 mM 
Tris-Cl pH 8, 400 mM NaCl, 4% SDS, 10 mM EDTA and 32 U ml–1 proteinase K 
(NEB, P8107S)) was then added directly to the RT solution, and the mixture was 
incubated at 37 °C for 30 min.

Second-strand synthesis. The solution was then pipetted up and down vigorously to 
remove beads from the surface, and the glass substrate was removed from the tube 
using forceps and discarded. Two hundred microliters of wash buffer (10 mM Tris 
pH 8.0, 1 mM EDTA and 0.01% Tween-20) was then added to the 400 μl of tissue 
clearing and RT solution mix, and the tube was centrifuged for 3 min at 3,000g. 
The supernatant was then removed from the bead pellet, and the beads were 
resuspended in 200 μl of wash buffer and centrifuged again. This was repeated a 
total of three times. The supernatant was then removed from the pellet. The beads 
were resuspended in 200 μl of ExoI mix (170 μl water, 20 μl ExoI buffer and 10 μl 
ExoI (NEB, M0568)) and incubated at 37 °C for 50 min.

After ExoI treatment, the beads were centrifuged for 3 min at 3,000g. The 
supernatant was removed from the bead pellet, and the beads were resuspended 
in 200 μl of wash buffer and centrifuged again. This was repeated a total of three 
times. The supernatant was then removed from the bead pellet, and the bead 
pellet was resuspended in 200 μl of 0.1 N NaOH and incubated for 5 min at 
room temperature. To quench the reaction, 200 μl of wash buffer was added and 
beads were centrifuged for 3 min at 3,000g. The supernatant was then removed 
from the bead pellet, and the beads were resuspended in 200 μl of wash buffer 
and centrifuged again. This was repeated a total of three times. Second-strand 
synthesis was then performed on the beads by incubating the pellet in 200 μl of 
second-strand synthesis mix (133 μl water, 40 μl Maxima 5× RT buffer, 20 μl of 
10 mM dNTPs, 2 μl of 1 mM dN-SMRT oligonucleotide and 5 μl Klenow enzyme 
(NEB, M0210)) at 37 °C for 1 h.

After second-strand synthesis, 200 μl of wash buffer was added, and the beads 
were centrifuged for 3 min at 3,000g. The supernatant was then removed from 
the bead pellet, and the beads were resuspended in 200 μl of wash buffer and 
centrifuged again. This was repeated a total of three times.

Library amplification. Water (200 μl) was added to the bead pellet, and the beads 
were moved into a 200-μl PCR strip tube, pelleted in a minifuge and resuspended 
in 200 μl of water. The beads were then pelleted and resuspended in library 
PCR mix (22 μl water, 25 μl of Terra Direct PCR mix buffer (Takara Biosciences, 
639270), 1 μl of Terra polymerase (Takara Biosciences, 639270), 1 μl of 100 μM 
TruSeq PCR handle primer (IDT) and 1 μl of 100 μM SMART PCR primer (IDT)), 
and PCR was performed according to the following program: 95 °C for 3 min; four 
cycles of 98 °C for 20 s, 65 °C for 45 s and 72 °C for 3 min; nine cycles of 98 °C for 
20 s, 67 °C for 20 s and 72 °C for 3 min; 72 °C for 5 min; hold at 4 °C.

PCR cleanup and Nextera tagmentation. The PCR product was then purified by 
adding 30 μl of AMPure XP beads (Beckman Coulter, A63880) to 50 μl of PCR 
product. The samples were cleaned according to the manufacturer’s instructions 
and resuspended in 50 μl of water. The cleanup was repeated, resuspending in a 
final volume of 10 μl. One microliter of the library was quantified on a Bioanalyzer 
High Sensitivity DNA chip (Agilent, 5067-4626). Then, 600 pg of PCR product was 
prepared as Illumina sequencing libraries through tagmentation with a Nextera 
XT kit (Illumina, FC-131-1096). Tagmentation was performed according to the 
manufacturer’s instructions, and the library was amplified with TruSeq5 and N700 
series barcoded index primers. The PCR program was as follows: 72 °C for 3 min; 
95 °C for 30 s; 12 cycles of 95 °C for 10 s, 55 °C for 30 s, 72 °C for 30 s and 72 °C for 
5 min; hold at 10 °C.

Samples were cleaned with AMPure XP beads (Beckman Coulter, A63880) 
in accordance with the manufacturer’s instructions at a 0.6× bead per sample 
ratio (30 μl of beads to 50 μl of sample) and resuspended in 10 μl of water. 
Library quantification was performed using a Bioanalyzer. Finally, the library 
concentration was normalized to 4 nM for sequencing. Samples were sequenced on 
an Illumina NovaSeq S2 flow cell 100 cycle kit with 24 samples per run (six samples 
per lane) with the read structure 44 bases for read 1, 8 bases for the i7 index read 
and 50 bases for read 2. Each puck received ~200 million reads, corresponding to 
~3,000 reads per bead.

Animal handling. All procedures involving animals at the Broad Institute were 
conducted in accordance with the US National Institutes of Health Guide for 
the Care and Use of Laboratory Animals under protocol number 0120-09-16. 
All procedures involving animals at Harvard University were handled according 
to protocols approved by the Institutional Animal Care and Use Committee of 
Harvard University (protocol number 11-03) and followed the guidelines set forth 
in the US National Institute of Health Guide for the Care and Use of Laboratory 
Animals. Wild-type C57BL/6 mice (Charles River Laboratories) were housed in a 
12-h light/12-h dark cycle with ad libitum access to food and water. We set harem 
breeding cages and defined morning of plug detection as E0.5.

Transcardial perfusion. C57BL/6 mice were anesthetized by administration 
of isoflurane in a gas chamber flowing 3% isoflurane for 1 min. Anesthesia was 
confirmed by checking for a negative tail pinch response. Animals were moved to a 
dissection tray, and anesthesia was prolonged via a nose cone flowing 3% isoflurane 
for the duration of the procedure. Transcardial perfusions were performed with 
ice-cold pH 7.4 HEPES buffer containing 110 mM NaCl, 10 mM HEPES, 25 mM 
glucose, 75 mM sucrose, 7.5 mM MgCl2 and 2.5 mM KCl to remove blood from the 
brain and other organs sampled. The appropriate organs were removed, frozen for 
3 min in liquid nitrogen vapor and moved to −80 °C for long-term storage.

Tissue handling. Fresh frozen tissue was warmed to −20 °C in a cryostat (Leica, 
CM3050S) for 20 min before handling. Tissue was then mounted on a cutting 
block with optimal cutting temperature compound and sliced at a 5° cutting 
angle at 10-μm thickness. Pucks were placed on the cutting stage and tissue was 
maneuvered onto the pucks. The tissue was then melted onto the puck by moving 
the puck off the stage and placing a finger on the bottom side of the glass. The puck 
was then removed from the cryostat and placed into a 1.5-ml Eppendorf tube.  
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The sample library was prepared as described below. The remaining tissue was 
returned to −80 °C and stored for processing at a later date.

Diffusion analysis. Diffusion was determined as previously described by 
measuring features across the CA1 of the mouse hippocampus1 for Slide-seqV2 
data (Puck 200115_08).

Comparison of counts for Slide-seq, Slide-seqV2, FISH and scRNA-seq. For 
Slide-seq and Slide-seqV2, we subsetted a region of the CA1 and took the total 
number of counts for each of the marker genes. For the scRNA-seq data, we used 
the mouse brain scRNA-seq data from ref. 11 and sampled a number of CA1 profiles 
equal to the number of cells found within the Slide-seq subsetted region. For the 
smFISH data, we generated the data by using HCRv3.0 with probe sets against each 
of the genes chosen in 488 nm, 594 nm and 647 nm (Slc17a7, Ociad2 and Atp2b1, 
respectively). Following recommendations from the manufacturer, we used the 
suggested number of probes per gene for HCRv3, namely 20 probe pairs per gene 
(40 probes total). Probe sequences were designed by Molecular Instruments. We 
stained the tissue with DAPI for segmentation purposes and for counting nuclei. 
We performed counting of smFISH data using a custom pipeline implemented 
using the Starfish package (https://github.com/spacetx/starfish) in Python.

Comparison of Slide-seqV2 to 10x Visium technology and HDST. To compare 
Slide-seqV2 to 10× Genomics Visium data (https://www.10xgenomics.com/
solutions/spatial-gene-expression/), we downloaded available coronal mouse 
hippocampus data and plotted the number of UMIs per spatial feature. We next 
binned Slide-seqV2 data from the same region to equivalent feature size (110 μm), 
accounting for the Visium data 55-μm feature size and 55-μm feature spacing, 
merging the counts of Slide-seqV2 beads (10 μm original) within each of the larger 
features generated (110 μm).

To compare Slide-seqV2 to HDST, we first obtained HDST data from 
supplementary data provided in the original HDST publication7. We used the data 
at 10-μm feature size (5× binned) and compared it to Slide-seqV2 data collected 
from an equivalent region (mouse olfactory bulb). We then plotted the number of 
counts per feature and took the mean to obtain the difference in average counts 
between Slide-seqV2 and HDST.

Spatial comparison of Slide-seqV2 to smFISH. To compare Slide-seqV2 to 
smFISH, we used a dataset recently obtained from mouse cortex using osmFISH, 
an optimized method of cyclic smFISH5. A spatial profile was taken along the 
length of the cortex for osmFISH and Slide-seqV2 data perpendicular to the 
expression of the layer marker Lamp5, traversing from layer 6 to layer 1 of the 
cortex. Each gene for both datasets was normalized along this profile. Genes in 
osmFISH with a coefficient of variation along the profile of >50% were selected 
for analysis (this enriches for cortical layer markers; other genes do not have 
stereotyped patterns along this spatial dimension and are not compared). Both 
datasets were downsampled to 50 μm and aligned spatially along the profile by 
aligning the positions of layer 1 and layer 4. To analyze spatial correlation, the 
Pearson correlation of each gene’s spatial profile against all genes was calculated 
between Slide-seqV2 and osmFISH as well as between osmFISH and osmFISH.

Hippocampal Slide-seqV2. Slide-seqV2 was performed on the mouse 
hippocampus (n = 4 sections, two mice). A spline was fit along the pyramidal cell 
layer of the CA1. Beads were averaged to a profile perpendicular to this spline 
~100 μm into the basal neuropil and ~400 μm to the proximal neuropil to form a 
spatial profile of gene expression along the CA1 neuropil axis.

Dendritic enrichment analysis. To test for dendritic enrichment, for each gene 
the gene expression in the soma layer (defined as ±32.5 µm from the peak of 
the profile counts for all genes) was compared against the gene expression in 
the proximal dendrites (greater than 32.5 μm away from the peak of the CA1 
layer). We leveraged existing scRNA-seq data11 to exclude marker genes from cell 
types outside of CA1 using differential expression. Specifically, all genes with 
twofold-higher expression in cell type clusters other than CA1 were excluded 
from the analysis. For each gene, the gene expression in the soma layer was 
normalized to the total number of UMI counts in the soma layer, and the gene 
expression in the proximal dendrite layer was normalized to the total number of 
UMI counts in the proximal dendrite layer. A two-sample t-test was performed 
to identify differentially expressed genes, and pFDR was calculated as described 
previously45.

Spatial clustering of dendritically enriched genes. For the 213 genes identified 
to be dendritically enriched, we clustered genes by their spatial profile along the 
CA1–neuropil axis via k-means clustering. The gap-statistic was used to determine 
the optimal number of clusters (k = 4).

Gene ontology analysis. For each cluster identified by spatial profiling, GO 
analysis was performed using the clusterProfiler46 package in R. Cellular 
components were from the org.Mm.eg.db47 (http://bioconductor.org/packages/
release/data/annotation/html/org.Mm.eg.db.html). Genome-wide annotation for 

mouse in Bioconductor was used for the ontology database. For Fig. 3, GO analysis 
was performed using biological processes from org.Mm.eg.db.

Cell-type specificity of dendritic genes. To explore the relationship between the 
cell-type specificity of gene expression and dendritic localization (Fig. 2g), we first 
computed differential expression between CA1 and other hippocampal principal 
cells from an existing single-cell dataset11 using the FindMarkers() function in 
Seurat. Next, we compared the log2 fold change of the genes in the dendritic and 
somatic gene sets (see “Dendritic enrichment analysis”) with a Wilcoxon rank-sum 
test and visualized the comparison using a quantile–quantile plot. To calculate 
dendritic and soma expression in CA3, the same procedure as in CA1 was carried 
out (see “Dendritic enrichment analysis”). Soma fold change was calculated as the 
ratio of counts in CA3 soma to CA1 soma after normalizing by the total number 
of UMIs in each compartment. Dendrite fold change was calculated as the ratio of 
counts in CA3 soma to CA1 soma after normalizing by the total number of UMIs 
in each compartment.

Embryo samples. Whole-mount frozen embryos were obtained from a commercial 
source (Zyagen). The pregnant mice (C57BL/6NCrl) were bred and maintained 
by Charles River Laboratories. The timed-pregnant mice (day 10) were shipped 
to Zyagen the same day. The mice were killed on the appropriate day for embryo 
collection.

Trajectory analysis. Trajectory analysis was performed using scVelo29. We 
first loaded intronic and exonic gene expression matrices, UMAP coordinates 
created in Seurat from the original clustering of the Slide-seqV2 data, cluster 
IDs, and spatial coordinates of each bead from Slide-seqV2 into a scanpy object 
using a custom Python environment. We next applied the LT method developed 
in scVelo to our Slide-seqV2 expression data and plotted each bead using the 
Slide-seqV2 coordinates with the shading defined by the LT ordering. Plots of 
individual expression of genes over LT were generated using plotting functions 
in scVelo plotting the expression of each individual gene over the LT axis with 
coloring of each bead by cluster identity to the original clustering of the data. 
Plots showing expression for each of the genes on the puck were performed using 
a custom Python script. The gene lists for LT were called as velocity loading 
genes from the scVelo pipeline using standard parameters and a likelihood cutoff 
of >0.1.

Monocle322,30 was run on the data by importing the UMAP and PCA 
coordinates from Seurat into a Single Cell Experiment object. The analysis 
was performed in accordance with the monocle tutorial found at http://
cole-trapnell-lab.github.io/monocle-release/monocle3/. The q-value cutoff for gene 
selection was q < 0.005.

Fitting a spatial surface to latent time. LT data scores generated from scVelo 
and spatial coordinates were taken as a 3D set of points (x, y and LT score), and a 
surface was fit over the set of points for a region of the cortex. A grid was created 
(80 μm × 80 μm for cortex), and the spatial derivative was taken over the grid using 
MATLAB’s differentiate function. The fx, fy values of the surface were extracted 
from MATLAB and imported into Python. The plot for Fig. 3b was generated 
using a custom Python script where the magnitude of the arrows represents the 
magnitude of the derivative at each of the points in the grid. The position of the 
underlying beads is from Slide-seqV2, and the color scale is from scVelo’s LT 
output.

Spatially non-random gene analysis. The test for spatial non-randomness was 
performed as previously described1 with the following modifications. Genes were 
identified as spatially non-random using a custom MATLAB application. The set 
of pairwise Euclidean distances between all beads was calculated. Candidate genes 
for the statistical significance analysis were required to have at least one transcript 
on at least ten beads. To determine whether a transcript had a significantly 
non-random spatial distribution within a particular set of beads, we compared the 
distribution of pairwise distances between the beads expressing at least one count 
of that transcript to the distribution of pairwise distances between an identical 
number of beads sampled randomly from all mapped beads on the puck with 
probability proportional to the total number of transcripts on the bead. Specifically, 
we generated 1,000 such random samples, and for each sample we calculated the 
distribution of pairwise distances. We then calculated the average distribution 
of pairwise distances, averages pairwise across all 1,000 samples. Finally, we 
calculated the L1 norm between the distribution of pairwise distances for each 
of the 1,000 random samples and the average distribution, and the L1 norm 
between the distribution of pairwise distances for the true sample of beads and the 
average distribution. We defined P to be the fraction of random samples having 
distributions closer to the average distribution (under the L1 norm) than the true 
sample and considered any genes with values P ≤ 0.005.

Spatial correlation to latent time. Spatially identified genes were binned along 20 
spatial contours of the same LT as fitted by the surface described above. Expression 
was normalized for each bin by the total number of counts observed. For each 
gene, the Pearson correlation coefficient and the P value of the correlation between 
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the binned expression in the spatial LT axis was correlated with a linear function of 
slope 1. pFDR was calculated as described previously45.

Spatial clustering of neurodevelopmental disorder genes. For the 74 genes 
identified to be involved in developmental disorders that load onto pseudotime, 
the spatial correlation between each gene was determined by convolving the 
spatial expression of each gene with an integralBoxFilter of size 70 µm, and then 
the 2D cross-correlation for each gene against each other gene was calculated with 
the MATLAB function corr2. The spatial cross-correlation matrix was clustered 
using k-means, and the gap-statistic was used to determine the optimal number of 
clusters (k = 6). The five clusters with more than two genes were analyzed with GO 
analysis and are visualized in Fig. 3g.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data are available at https://singlecell.broadinstitute.org/single_cell/study/
SCP815/sensitive-spatial-genome-wide-expression-profiling-at-cellular-resolutio
n#study-summary.

Code availability
Code related to this manuscript can be found at https://github.com/MacoskoLab/
slideseq-tools and https://github.com/rstickels/Slide_seqv2. The following package 
version numbers were used for data processing and associated analyses: https://
github.com/broadinstitute/Drop-seq (Drop-seq-tools-2.3.0), https://broadinstitute.
github.io/picard/ (picard-2.18.14), https://github.com/alexdobin/STAR 
(STAR-2.5.2a), https://github.com/theislab/scvelo (0.1.25), https://github.com/
cole-trapnell-lab/monocle3 (beta) and https://github.com/satijalab/seurat (2.3.4). 
MATLAB 2017a, R3.5.3 and Python 3.7 were used for processing data.
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