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New technologies to measure biomolecules have been criti-
cal drivers of biological progress. When measuring biomol-
ecules, researchers have historically faced a key trade-off in 

selecting experimental methodologies. On the one hand, ‘-omics’ 
tools generate broad, often comprehensive measurements of many 
biomolecules from a purified specimen. On the other hand, a suite of 
targeted tools, such as immunostaining or in situ hybridization, can 
localize a much smaller number of specific molecules within intact 
cells and tissues. Research projects, therefore, often have combined 
these two phases: a researcher first formulates a hypothesis using an 
‘omics technology and then performs targeted, hypothesis-driven 
work to characterize the role of specific genes or proteins within 
intact tissues of interest.

This historical bifurcation in methodologies is being upended by 
the recent rapid development of spatial transcriptomics (ST) tech-
nologies. These tools enable the quantification of RNAs across the 
transcriptome within intact tissue sections. Broadly speaking, we 
see ST as best suited to answering three kinds of biological questions 
(Fig. 1a). First, ST technologies can elucidate the cell-type composi-
tion of tissues. Cell-type definitions are frequently imported from 
large-scale single-cell RNA-seq or epigenetics datasets and compu-
tationally projected onto ST datasets to learn their spatial distribu-
tions, but definitions can also be generated from the ST data directly. 
To date, this has been the most used application of ST in published 
studies. Using ST, compositional atlases have been generated for a 
wide variety of tissues, including nervous system tissues1–5, human 
kidney6–8, heart9, testes10 and lung11.

A second kind of question relates to cellular interactions; which 
rules and patterns define how individual cell types spatially covary 
with each other? For example, an ST study of mouse visual cortex4 
found a predilection for inhibitory neuron subtypes to be more spa-
tially proximal to each other than would be expected if they were 
distributed randomly. Similar kinds of proximity analyses have been 
used to define gene expression patterns upregulated by amyloid 
plaques found in Alzheimer’s disease12 and to characterize histo-
pathological responses to traumatic brain injury13.

Finally, because ST technologies often deliver transcriptome-wide 
data on gene expression in situ, ST can help elucidate molecular 
interactions between tissue components. By defining ligand–recep-
tor pairs among cell types at different spatial proximities, we can 

determine whether, and how, individual cell types are commu-
nicating with each other. Such analyses should help clarify many 
cell non-autonomous phenomena, including interactions between 
tumors and the surrounding environment14,15, immune infiltrates in 
tissues or the establishment of developmental gradients16.

To understand how current and future technologies can improve 
our capacity for addressing these problems, here we describe in 
detail the existing ST technologies in the sections below, including 
those that use either next-generation sequencing for gene detection 
or imaging-based detection. ST emerged from parallel, synchronous 
efforts by two distinct groups of technologists (Fig. 1b). In genomics, 
advances in massively parallel DNA sequencing, molecular biology, 
DNA-based molecular barcoding and computational analysis made 
possible the measurement of gene expression, and more recently 
epigenetic regulation, within many individual cells. These strate-
gies and concepts were creatively adapted to capture RNA locally 
from intact tissue sections on a pixelated, DNA-barcoded surface 
and read out their gene identities using next-generation sequenc-
ing17. We term this family of technologies ‘sequencing-based ST’ 
(sST). In parallel, technologists working on microscopy techniques 
developed several strategies for simultaneously detecting the pres-
ence of many mRNA transcripts within tissues using fluorescence 
in situ hybridization (FISH)18,19 or direct in situ sequencing20,21. We 
call such technologies ‘imaging-based ST’ (iST). These two classes 
of technology deliver similar and complementary measurements of 
gene expression in situ.

In our discussion of the major instantiations of sST and iST, 
we describe the key metrics and experimental frameworks for 
their characterization and validation. In particular, we emphasize 
the importance to the field of adopting experiments that validate 
technological claims and enable comparisons across platforms. 
The design of quality-controlled experiments with well-defined 
conditions that can be easily replicated across labs and methodolo-
gies can be extremely catalytic for technology development. For 
example, the mixed-species experiment used in single-cell tech-
nology development22,23 (in which cells from well-established cell 
lines derived from different organisms are mixed together before 
the assay) has become a widely accepted benchmark for validating 
the sensitivity and specificity of new methodologies. The field of 
ST could similarly benefit from defining a standard set of reference  
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experiments by which to gauge the performance of the key experi-
mental parameters.

sST
sST technologies typically begin with the construction of a spa-
tially indexed surface (Fig. 2a), in which each pixel contains a 
barcoded DNA primer that uniquely marks a pixel’s location in 
two-dimensional space. Tissue is then placed on top of the surface, 
and the resident mRNA is brought into contact with the primer, 
either by diffusion of RNA from the tissue to the surface or diffu-
sion of the barcoded primers into the tissue. Typically, primers with 
poly(T) sequences on their 3′ termini are used to capture mRNAs 
across the transcriptome.

Spatially indexed pixels have been generated in a variety of ways. 
The first strategy, used by Stahl and colleagues17 and used in the 
Visium technology sold by 10x Genomics, uses a microarrayer spot-
ting robot to deliver a unique barcode to a fixed, known location on 
the surface of a slide. These spots are 50–200 µm in size (although 
upcoming Visium products will reportedly have smaller pixels) and 
are separated by a similar amount of white space to prevent mixing 
during liquid handling. A second strategy uses solid microparticles 
for spatial barcoding. In Slide-seq13, beads that are 10 µm in diam-
eter are used as the solid support for oligonucleotide synthesis, in 
which the bead barcode is created by split-pool cycles, a process first 
developed for single-cell barcoding22. The beads are fabricated into 
a tightly packed uniform monolayer on a slide, and the locations 
of each barcode are ascertained by in situ sequencing. Alternative 
strategies, either for the method of affixing barcodes to beads or 
for DNA synthesis, enable the pixel size to be reduced to the 1- to 

5-µm range24. A third strategy is to locally amplify unique barcode 
sequences by rolling circle amplification (RCA) or bridge amplifica-
tion. In Stereo-seq, DNA nanoballs are generated by RCA that span 
~200 nm in diameter with 500- to 715-nm center-to-center spacing, 
and each colony barcode is sequenced. A poly(T) capture sequence 
is then ligated onto the barcoded nanoballs to enable capture of 
released RNA. In Seq-Scope25, barcoding is accomplished by local 
bridge amplification of DNA randomers directly onto an Illumina 
sequencing flow cell to create colonies that are 0.5–1 µm in diameter. 
Pixels can also be formed combinatorically. In DBiT-seq26, micro-
fluidic channels deliver barcoded reverse transcription primers to 
the RNA within tissue; the channel apparatus is then rotated 90° to 
deliver a second set of primers in the orthogonal direction that are 
ligated in situ, creating a paired barcoding scheme for recovering 
two-dimensional coordinates.

Once surface barcoding is complete, the downstream work-
flows of these technologies are remarkably convergent. In most 
technologies, tissue is placed in contact with the barcoded surface, 
and mRNA diffuses to the barcoded primers (with the exception 
of DBiT-seq, in which primers are diffused into the tissue; Fig. 2b). 
Reverse transcription, cDNA amplification and short-read sequenc-
ing generate reads that contain mRNA fragments for transcriptome 
alignment paired with barcode sequences that are matched back 
to the pixel whitelists. The result is the spatial localization of each 
detected transcript to each pixel.

Quality control. In sST, the two most important quality param-
eters are the mRNA capture sensitivity per unit area and the spa-
tial accuracy of mRNA detection, which can be reduced by simple 
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lateral diffusion or more complex technical artifacts. In addition, 
characterizing and comparing sST technologies involves several 
additional parameters. One is the sequencing efficiency (or the 
amount of DNA sequencing required to ascertain a particular num-
ber of mRNA molecules). Another is the spatial area covered by the  

technology (and its flexibility to accommodate tissues of different 
sizes, compositions and shapes), which can be quite germane to a 
technology’s applicability to specific biological problems.

The capture sensitivity of a technology is highly influenced by 
the specific molecular and cytoarchitectural features of the tissue 

S
po

t s
iz

e 
(μ

m
)

S
pot size used for analysis (μ

m
)

10

0
10x

Visium
HDST Slide-

seq
Stereo-

seq
Seq-

Scope
Pixel-
seq

DBiT-
seq

20

30

40

50

60 60

40

20

0

N
or

m
al

iz
ed

 a
ve

ra
ge

 U
M

I c
ou

nt
pe

r 
10

-μ
m

-d
ia

m
et

er
 s

po
t

8

2

32

128

512

2048

8192

Microarray

Two-dimensional surface indexing

Bead Polonies/nanoballs

HDST
Slide-seq Stereo-seq

PIXEL-seq
Seq-Scope

Microfludic

2–10 μm

Cell 1

10
5
...

8

Gene 1
Gene 2

...

Gene M

Cell 2

5
21

...

1

Cell 3

6
20

...

2

x

141.2
514.9

...

80.3

Cell 1
Cell 2

...

Cell N

y

511.4
219.9

...

127.4

Spatial location

Sequencing

Data processing

Tissue application

Spatially indexed surface

Method A
Method B
Method C

To
ta

l c
ou

nt
 p

er
 a

re
a

sm
FIS

H

M
et

ho
d 

A

M
et

ho
d 

B

M
et

ho
d 

C

Sensitivity

Resolution/diffusion

Aggegrate gene expression
profile on selected region

Feature thinkness

10–100 μm

DBiT-seq

<5 μm

Mouse olfactory bulb
Mouse hippocampus
E10 mouse embryo
E12.5 mouse embryo

E14 mouse embryo
Liver 
Colon

a

b

M
ar

ke
r 

ex
pr

es
si

on

c
d

Spatial transcriptomics
10x Visium

sci-Space

50–150 μm

Fig. 2 | sST methodology and characterization. a, Workflow of sST methods. Strategies for the fabrication of indexed pixel surfaces where DNA-barcoded 
primers are associated with spatial localization. Microarray-based strategies use deterministic DNA barcodes printed on glass slides. Bead-based strategies 
use DNA-conjugated beads with diverse, clonal barcodes whose spatial locations are ascertained. Nanoball- or polony-based strategies use local clonal 
amplification to generate clusters of clonally barcoded primers. Microfluidic barcoding uses channels to deterministically deliver row and column barcodes 
to a tissue, forming a two-dimensional grid. HDST, high-definition spatial transcriptomics. b, Steps of sequencing library generation downstream of surface 
indexing. Basic computational processing of the data results in a digital gene expression matrix with a paired table of coordinates for each pixel. c, Top, 
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being assayed. Tissues can vary by several orders of magnitude in 
how much RNA can be captured per unit area because of differences 
in RNase content, cell density, extracellular matrix composition 
and other features. To date, the performance of new technologies 
has not been assayed with a set of consistent, standardized tissues  
(Fig. 2c shows select sensitivity and resolution metrics across a 
variety of technologies and tissue types). To properly characterize, 
benchmark and compare new technologies and improvements, it will 
be highly beneficial for the field to establish a set of reference tissues 
with well-defined histological structures that test different techno-
logical challenges (Fig. 2d). Stahl et al. validated their technology 
with the adult mouse olfactory bulb, which has been subsequently 
used by several other sST technologies for validation. The olfac-
tory bulb is composed of five discrete layers, each with well-known 
molecular markers, making it a useful model for technology vali-
dation. In addition, the use of mouse embryos of different ages is 
reasonably common16,26,27, as they have extensive cytoarchitectural 
variation in small regions, and the cells are smaller and more com-
pact than those in the brain. We propose the additional inclusion of 
an embryonic day 12 (E12)–E14 mouse embryo sectioned sagittally 
at a position along the medial–lateral axis that includes the eye. The 
eye is clearly identifiable, even by non-experts, and is a symmetric 
structure with clear histological layers, making direct comparisons 
across experimental replicates and regimens more straightforward. 
The consistent usage of these two standardized tissue types and 
other tissues with similar features would be enormously helpful to 
overall technology development goals in the field.

To quantify mRNA capture, a histological structure can be seg-
mented from an ST-derived pseudoimage, generated either from 
shading individual pixels by the number of unique molecular 
identifiers (UMIs) or by plotting the intensity of a metagene that 
correlates with the chosen histological structure13 (Fig. 2d). Once 
segmented, counts of individual genes are summed within the area; 
single-molecule FISH (smFISH) performed on the same genes in 
the same histological structure provides a direct, rigorous com-
parison of a technology’s sensitivity. If the histological structure is 
composed of a uniform cell type, it is also possible to compute an 
average expression per cell by counting cells in the feature for direct 
comparison to single-cell sequencing data.

From this same analysis, the spatial resolution of the technology 
can be assessed. A dimension of the segmented histological struc-
ture can be extracted by measuring the distance between full-width 
at half-maximum of intensity. That distance is then compared to the 
same dimension measured with an image of the same feature gener-
ated by histological or smFISH staining. This provides a quantita-
tive assessment of lateral diffusion of transcripts from their source 
within the tissue. A similar approach can be taken with the same 
data to quantify false-positive noise (although this is less commonly 
a problem in sST technologies because individual genes known to be 
excluded from specific histological structures are quantified within 
that excluded feature in the ST dataset and compared to counts of 
that gene from smFISH data). These simple analyses, if performed 
on widely available agreed-on tissue samples, provide a common 
language for characterizing and comparing sST technologies.

iST
In parallel to the development of sST technologies, there has been 
an explosion in the number of iST approaches.

In Fig. 3, we outline the broad concepts behind iST. In iST, RNA 
molecules are specifically tagged with fluorescent probes by com-
plementary hybridization. These probes are then imaged using fluo-
rescence microscopy. Although fluorescence-based RNA detection 
in situ has been widely used for more than two decades, spectral 
limitations have prevented routine simultaneous imaging of roughly 
more than five to ten distinct organic fluorescent molecules. To over-
come this limitation, recent iST approaches generally use multiple 

sequential imaging rounds and combinatorial strategies for detec-
tion of transcripts. Thus, a specific iST approach is largely defined 
by the detection modality, by how RNAs molecules are labeled and 
the multiplexing approach or by how multiple RNA transcripts are 
detected across sequential imaging rounds. These approaches have 
primarily been driven by advances in three fields: oligonucleotide 
synthesis28, fluorescence microscopy and single-cell transcrip-
tomics. Recent advances in oligonucleotide synthesis now enable 
specific synthesis of 105–106 individual oligonucleotide sequences in 
a pooled fashion, critical for generation of barcoded hybridization 
probes. Recent developments in sensitive scientific complementary 
metal–oxide semiconductor detectors29,30 and organic fluorophores 
now enable sensitive, high-throughput detection of labeled RNAs in 
cells and tissues. Lastly, comprehensive single-cell atlases allow for 
the selection of informative RNA subsets for labeling.

Detection modality. Three main strategies for labeling RNA mol-
ecules in situ are used in iST: direct probe-based detection, enzy-
matically assisted probe-based detection and direct enzymatic 
sequencing of RNA molecules in situ (Fig. 3a). All detection modal-
ities start with fixed cells and tissues, where the RNA molecules are 
cross-linked to the cellular matrix, thereby fixing their positions 
throughout processing.

The first approach, direct probe-based detection, is based on 
smFISH protocols pioneered by Singer and colleagues31,32 and subse-
quently by Raj et al.31–33 in which RNA transcripts are tiled with many 
(>20) short (20–50 nucleotides) fluorescently labeled complemen-
tary oligonucleotide probes recruited to a single diffraction-limited 
spot, generating a punctate high-specificity signal.

The second approach, enzymatically assisted probe detection, 
generates sensitivity and specificity through enzymatic detec-
tion and polymerase-based amplification with RCA21,34. There are 
several advantages to enzymatic-assisted probe detection com-
pared to direct probe-based detection methods. First, RCA ampli-
cons are bright and detectable with a high signal-to-noise ratio 
in fluorescence microscopy, even with lower magnification and 
exposure times. Second, enzymatic gapfill through reverse tran-
scription allows de novo sequence on the RNA to be targeted and 
sequenced and enables interrogation of genetic variation (for exam-
ple, single-nucleotide polymorphisms) and barcodes21,35,36. Third, 
increased signal-to-noise ratio allows more diverse iterative barcod-
ing approaches, such as commercial fluorescence sequencing chem-
istries. The initial methodology circularized probes hybridized to 
in situ-generated cDNA, but more recent methods have amplified 
directly from RNA to increase detection efficiency4,37.

The third detection approach, direct enzymatic sequencing, uses 
in situ enzymatic reactions to perform RNA-sequencing library 
construction within cells and tissues. This approach, pioneered by 
Church and colleagues20,37 and subsequently expanded by Boyden 
and colleagues20,37, uses in situ reverse transcription with random 
hexamer primers to generate cDNA, which is subsequently frag-
mented and intramolecularly circularized. These circularized 
molecules are subsequently amplified via RCA. Here, specificity 
for individual RNA molecules is conferred through alignment of 
in situ sequencing reactions (see ‘combinatorial multiplexing’) per-
formed on the RCA amplicons. Because of its untargeted nature, 
this approach is most similar to sST and offers the possibility of 
hypothesis generation from transcriptome-wide data. However, the 
low conversion rate of RNA molecules to sequenced RCA ampli-
cons limits its application in many ST experimental contexts that 
require sensitive gene expression quantification.

Multiplexing. There are two main classes of iST-based multiplex-
ing: sequential readout and combinatorial multiplexing (Fig. 3a,b). 
Both classes leverage multiple imaging rounds to overcome the lim-
itations in spectral bandwidth.
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In sequential readout approaches, a unique set of mRNA mole-
cules is labeled and imaged, and the fluorescent probes are removed 
in each imaging round. Subsequently, in the next imaging round, a 
new set of mRNA molecules is labeled, and the process is repeated. 
In this way, the number of unique mRNA targets imaged scales as 
number of rounds × number of fluorescent channels. As one exam-
ple, in non-barcoded and unamplified cyclic-ouroboros smFISH38, 
smFISH probes are stripped by denaturants during each imaging 
step, followed by a new round of smFISH staining. The main advan-
tage of sequential readout methods is that they are simple to imple-
ment because they do not need sophisticated image processing and 
alignment over many imaging rounds, and they are robust to encod-
ing errors and to higher densities of labeled RNAs. However, this 
ease of implementation comes with a substantial trade-off in multi-
plexing scalability up to roughly 100 genes, as sample stability over 
repeated imaging rounds becomes limiting (Fig. 3c).

In combinatorial multiplexing approaches, each mRNA mol-
ecule is interrogated over multiple imaging rounds, and its identity 
is decoded by the combination and order of the images in which it 
is (and is not) detected18,19,39–41. For example, in multiplexed error 
robust FISH (MERFISH), Zhuang and colleagues39 assigned a 
binary code to each mRNA molecule interrogated, wherein a 1 cor-
responds to an imaging round where the mRNA molecule is labeled 
and a 0 corresponds to an imaging round where it is dark. Here, 
the codebook size in theory scales as 2N, where N is the number of 
imaging rounds. Critically, Zhuang and colleagues39 implemented 
a hamming distance-corrected error-robust codebook, which uses 
bits in the diversity of the codebook to enable detection and cor-
rection of errors in single-imaging rounds. This allowed 140 genes 
to be imaged in 16 rounds, with the ability to correct for errors in 1 
round and the ability to detect if an error had happened in 2 imag-
ing rounds. Several implementations exist under the umbrella of 
combinatorial multiplexing, which mainly differ in cycling chem-
istry (Fig. 3a, cycling chemistry). The simplest cycling chemistry 
is reversible hybridization of a fluorescently labeled probe using 
heat/denaturants and/or DNAse to remove DNA probes after imag-
ing38,41. To increase the speed of cycling, reducing agent-cleavable 
dyes conjugated to detection oligonucleotides have been used40. 
Lastly, cyclic fluorescent sequencing chemistries, such as sequenc-
ing by ligation and sequencing by synthesis, have been directly used 
in situ for combinatorial readout, primarily for RCA amplicons4,35,37. 
Given that the encoding space of combinatorial multiplexing scales 
exponentially, the main barrier to increasing the number of genes 
detected is density of molecules labeled. Recent advancements have 
enabled detection of 1,000–10,000 or more genes with high effi-
ciency through either sparsification of the codebook or expansion 
microscopy, with a decrease in throughput due to increased imaging 
rounds (Fig. 3c)3,4,18,42,43. We summarize the combinations of read 
and detection methods used and highlight the degree of multiplex-
ing and detection efficiency of non-exhaustive technology examples 
in Fig. 3b,c, with more technologies being developed recently44–48.

Image processing. Following the collection of multiround image 
data, three primary steps are used in image processing to generate 
primary ST data: spot detection, image registration and decoding 
into spatial mRNA localizations. During spot detection, local max-
ima detection is used to localize the centroid of fluorescent spots 
corresponding to individual mRNA molecules. In both sequential 
readout and combinatorial multiplexing approaches, the same cells 
and tissues are imaged over many imaging rounds. As such, a critical 
aspect of the multiplexing approach is to align each imaging round 
to the same coordinate framework. This is generally performed 
using image features, such as fluorescent nuclear staining (for exam-
ple, with DAPI), fiduciary markers (for example, fluorescent beads) 
or the mRNA molecule localizations themselves. For combinatorial 
multiplexing, the alignment needs to be accurate to the resolution 

of individual mRNA localization (~single diffraction-limited spot) 
for decoding. Lastly, following image alignment and registration, for 
combinatorial multiplexing, the order of fluorescent signals for each 
localized spot is decoded either through matching to a codebook 
in multiplexed FISH and targeted in situ sequencing approaches 
or through matching to the transcriptome for untargeted in situ 
sequencing. For transcriptome mapping, although in situ sequenc-
ing is limited in read length, pioneering approaches have paired 
sequencing of the same molecules with ex situ high-throughput 
sequencing to enable longer read lengths.

Quality control. In iST, just as in sST, the two key data quality 
parameters are sensitivity and specificity. These parameters need to 
be assessed given the specific conditions for detection, multiplexing 
and image processing for a given technology. Sensitivity and speci-
ficity can be assessed by direct external validation via smFISH or 
by the use of internal positive and negative controls. Several stud-
ies using MERFISH or expansion sequencing have directly bench-
marked multiplexing performance against smFISH for the same 
images. The near-quantitative detection rate and low false posi-
tivity rate of smFISH allows for direct measurements of detection 
efficiency (false negative) and false positives. In addition to direct 
external validation, the use of built-in positive controls can provide 
internal validation for multiplexed imaging experiments. These 
include built-in codebook controls with no probes assigned to mea-
sure decoding accuracy, scrambled probes to measure false-positive 
detection rates and standard control mRNA targets to allow for 
comparison of detection efficiency across experiments (Fig. 3d).

An underexplored aspect of imaging-based approaches is how 
performance varies with the degree of multiplexing. As the number 
of interrogated mRNAs increases, molecular crowding can prevent 
efficient detection in the case of enzymatic approaches and make 
image processing and decoding difficult for FISH-based detection. 
In MERFISH39 and in situ sequencing37, such molecular crowd-
ing has been addressed through expansion microscopy49,50 at the 
expense of volumetric throughput. In addition, as more genes are 
encoded, longer codebooks are needed or fewer bits can be devoted 
to error correction. As such, a key benchmark needed is how sen-
sitivity and specificity scale as a function of number of genes and 
spatial molecular density (Fig. 3d).

Lastly, there is a need to systematically assess how image- 
processing pipelines affect data outputs. This is hampered by the 
fact that current analysis pipelines for iST are boutique and technol-
ogy specific. In addition, a current lack of standardized data formats 
across the field for images makes it difficult to develop and bench-
mark generalized iST image-processing pipelines (from registra-
tion, spot calling and decoding to cellular segmentation). As such, 
generalizable, open-source image-processing tools for iST (https://
spacetx-starfish.readthedocs.io/en/latest/) are needed, together 
with standardized primary datasets on which to benchmark such 
tools. Ideally, these benchmarks and quality control parameters 
need to be explored in the context of a set of standardized reference 
tissues, preferably shared with sST approaches outlined in Fig. 2.

Beyond ST in cells and tissues
The recent and rapid progress in the development of ST method-
ologies is a harbinger of a broader technological transformation 
of genomics to the study of intact cells and tissues. The same tools 
that enabled ST (high-throughput DNA sequencing, novel barcod-
ing strategies, new microscopy tools and innovations in molecular 
enzymatics) will increasingly allow genomics to be used to answer 
questions in cell and tissue biology. We anticipate technology devel-
opment proceeding in three main domains (Fig. 4).

Applications to other modalities. Modern genomics has assembled 
an impressive array of measurement technologies of biomolecules  
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through creative combinations of enzymatic and biochemical 
manipulations with DNA-sequencing readouts. However, most of 
these technologies can only be used in vitro on substrates extracted 
and purified from tissues or cells. Adapting genomics technologies 
to function within intact tissue sections represents an enormous 
opportunity for biological discovery. We anticipate that the prog-
ress ST technologies have made in digitally counting transcripts 
will be increasingly applied toward other modalities of genomic 
measurements. For example, iST has recently been used to quantify 
nascent mRNA by targeting introns51, and this approach could be 
similarly adapted to quantify splice variants by targeting exon–exon 
junctions51. The discovery of isoform variants currently requires 
long-read technology and/or plate-based methods to assess. Future 
adaptation of long-read pipelines or targeted isoform sequencing 
in situ should enable scalable adaptation to the spatial domain. 
Although the immense diversity of isoforms across cell types is well 
known, many questions remain concerning how this variability is 
functionally manifested across cell types and tissue localizations.

Beyond the transcriptome, spatial profiling of genomic varia-
tion has begun to be explored, but tools are still in relative nascency. 
Available technologies have primarily measured genome structure 
through imaging52–55, but more recently, sequencing-based strate-
gies have also been reported56. Many of the same techniques used 

by these technologies could also be applied to study epigenomic 
modifications and regulation57. These techniques would have 
applications in cancer mutational profiling, and spatial profiling of 
genomic variation may help elucidate the functional relevance of 
somatic mutations in aging and disease.

Spatial methods may also offer an opportunity to unify the 
world of genomics and proteomics. Although genomics has tradi-
tionally been focused on dissociated measurements, interrogation 
of protein localization with affinity reagents has long been per-
formed with low multiplexity in situ. Recent developments in DNA 
barcoding of affinity reagents, such as antibodies, have enabled 
highly multiplexed protein readouts via sequencing26,58. These 
approaches are readily adaptable to the spatial domain, especially 
in the context of spatial-capture ST measurements. In the near 
future, whole-proteome affinity libraries (including antibodies, 
nanobodies and aptamers) may be used and interrogated in situ. 
Furthermore, proximity-based enzymatic reactions, such as liga-
tion59 and polymerase extension60–62, may enable high-throughput 
protein–protein, DNA–protein and RNA–protein interaction mea-
surements within tissues. Lastly, there has been rapid development 
in numerous approaches for novel protein-sequencing methods that 
leverage single-molecule imaging63; one day, this may allow direct 
protein sequencing in tissues.
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Improvements in resolution. Current spatial genomic approaches 
span a wide range of spatial resolution from broad tissue regions 
to subcellular localization, with an overall trade-off between volu-
metric throughput of tissue and spatial resolution of data collected. 
Different spatial resolutions are suited to different classes of bio-
logical problems. The ability to perform cellular segmentation on 
the measured transcripts is crucial for many downstream applica-
tions, such as quantifying cell-type composition and organization 
of tissues. In both sST and iST, segmentation is a computational 
problem. For sST, it involves the deconvolution of cell-type mix-
tures from a pixel64–66; the problem is made much simpler when 
pixel size is reduced to the size of individual cells. For iST, the 
computational task is to assemble individually detected transcripts 
into cells from microscopy images67–69. Progress on both of these 
efforts has been made, but additional computational innovation will 
greatly accelerate the ability of ST tools to be applied to problems in  
tissue biology70.

After tissue composition, increasing resolution will enable mod-
els of tissue organization that take into account cellular interactions. 
Fundamental questions include how does one extract the relevant 
cellular networks that compose tissues? And, how does one discover 
the functional receptor–ligand interaction networks between cells? 
Such questions are most suited to technologies with cellular resolu-
tion or higher to enable accurate assignment of molecular signa-
tures to networks of interacting cells.

Additionally, technologies that enable the precise in situ colocal-
ization of biomolecules (potentially at resolutions exceeding the dif-
fraction limit) remain almost entirely unexplored. One intriguing 
exception is the proposal by several groups to use in situ PCR ampli-
fication with local concatenation to detect spatial proximity between 
two nucleic acids60,61. A method for in situ molecular colocalization 
would be enormously biologically enabling, from the quantification 
of transcription factor binding sites to the colocalization of biomol-
ecules to specific organellar compartments or the quantification 
of gap junctions or other cell–cell interactions. Although genomic 
technology for quantifying such proximity or interaction events 
does exist, such as chromatin immunoprecipitation–sequencing 
or ribosomal profiling, these methods are most suited to bulk-level 
analyses of lysed tissue rather than analysis in situ.

Observation of cellular dynamics. Almost all current genomic 
technologies are end-point measurements that provide a snapshot 
of biology, but there is an exciting future for approaches that provide 
temporal context to spatial genomic measurements. Looking for-
ward, we anticipate innovations related to integration of molecular 
recording technologies, computational inference of dynamics and 
in situ perturbations.

The intersection between spatial genomic technologies and 
synthetic genetic manipulation approaches for molecular record-
ing is especially promising. Recently, a burgeoning number of 
gene-editing-based molecular recording technologies that encode 
lineage and signaling dynamics into genomic sequence have been 
described71–76. These approaches have leveraged single-cell sequenc-
ing for subsequent readout of the genomic information. Given 
the inherent similarities in chemistry between single-cell and sST, 
genomic recordings of lineage may be easily translated to the tis-
sue context. Such measurements will be important for develop-
mental biology, wherein information regarding cellular lineage, 
cell state and adult tissue organization can be simultaneously com-
bined to form the developmental picture. In tumor evolution, such 
approaches can answer important questions regarding the spatial 
heterogeneity of tumor clones and the relationship between tumor 
clone fitness56,77 and the cellular microenvironment. Beyond lin-
eage, novel recording technologies are beginning to encode cellular 
histories and transcriptomic states73, which may offer the promise of 
fully four-dimensional measurements of cell states with genomics.

Regarding the computational inference of dynamics, there has 
recently been an explosion in the number of computational tools 
for single-cell studies, such as pseudotime78,79 and RNA veloc-
ity80,81. Approaches developed for single cells have been successfully 
applied to ST data, such as the application of RNA velocity to ST 
of the developing mouse cortex82. However, future development of 
spatial-oriented toolboxes for computational dynamics will more 
directly leverage the unique aspects of ST data. One may leverage 
the subcellular localization of RNA to infer additional temporal 
information regarding dynamics (for example, RNA is made in the 
nucleus but translated in the cytoplasm42). More importantly, spatial 
information may provide contextual ground truth in pseudotime 
analyses, such as using cellular localization to assign nodes in cel-
lular trajectories.

Lastly, perturbations allow causality to be inferred from end-point 
measurements. Recent approaches have enabled nucleic acid bar-
coding of both genetic and chemical perturbations83 for single-cell 
readout. Similar to molecular recording, perturbation barcoding 
approaches83–85 may be inherently compatible with spatial-capture 
methods. Additionally, barcode readout via in situ sequencing has 
been demonstrated for imaging methods36,86,87. Analyzing the effects 
of genetic perturbation in situ using ST will enable profiling of phe-
notypes that cannot be accessed in the absence of tissue context. 
These phenotypes are numerous, including cellular localization and 
cell–cell interactions.

Conclusions
The application of genomics to tissues represents an exciting, mul-
tifaceted domain of technology development. Faced with many 
exciting opportunities for new measurements in the future, what 
can the field do to further accelerate the pace and quality of these 
developments? The early and easy sharing of data and protocols are 
key catalysts of technological progress. This lesson is perhaps best 
exemplified by the recent rapid progress in the field of single-cell 
genomics, where manuscripts are usually preprinted and processed, 
raw data are shared with publication (and often before) and pro-
tocols are made easily accessible through online portals. In ST, the 
heterogeneity of methodologies breeds a large variety of file formats 
and data structures. This makes data and protocol sharing more 
challenging but also all the more necessary to contextualize a new 
method within the broader technological ecosphere. Efforts have 
begun to develop systematized pipelines for image data processing 
(https://github.com/spacetx/starfish), but more needs to be done to 
build generalizable file formats and standardized data storage and 
access pipelines. Relatedly, we see the adoption of standardized tis-
sues and quality control measurements as essential to developing a 
common language for technological progress in ST. Without such 
standards, a clear comparison of even basic metrics, such as the cap-
ture efficiency of RNA, is not possible.

The advent of spatial genomics also poses an additional impor-
tant challenge of how to facilitate hypothesis generation and testing 
by biological experts using these powerful new tools. Undoubtedly, 
a key to this will be invention and adoption of computational tools 
for analysis of these new data types. Computational tools will be 
important for not only extracting biological insights from the data 
but also informing the design of spatial genomics experiments. We 
anticipate that the maturation and dissemination of spatial genom-
ics technologies will become a critical driver of biological discovery 
across many fields of tissue and disease biology.
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